
Abstracties voor het programmeren van grafische processoren
in hoogniveau-programmeertalen

Abstractions for Programming Graphics Processors
in High-Level Programming Languages

Tim Besard

Promotor: prof. dr. ir. B. De Sutter
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019

ISBN 978-94-6355-244-8
NUR 980
Wettelijk depot: D/2019/10.500/52

Examination Committee
Prof. Filip De Turck, chair

Department of Information Technology
Faculty of Engineering and Architecture
Ghent University

Prof. Koen De Bosschere, secretary
Department of Electronics and Information Systems
Faculty of Engineering and Architecture
Ghent University

Prof. Bjorn De Sutter, supervisor
Department of Electronics and Information Systems
Faculty of Engineering and Architecture
Ghent University

Prof. Jutho Haegeman
Department of Physics and Astronomy
Faculty of Sciences
Ghent University

Prof. Jan Lemeire
Department of Electronics and Informatics
Faculty of Engineering
Vrije Universiteit Brussel

Prof. Christophe Dubach
School of Informatics
College of Science & Engineering
The University of Edinburgh

Prof. Alan Edelman
Computer Science & Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

ii

Dankwoord
Ik wist eigenlijk niet waar ik aan begon, toen ik in 2012 in de cata-

comben van het Technicum op gesprek ging over een doctoraat. Of ik
al eens met LLVM gewerkt had. Ondertussen zijn we vele jaren verder,
werk ik op een bureau waar er wel daglicht is, en is het eindpunt van
deze studie zowaar in zicht. Dat mag natuurlijk wel, zo vertelt men mij,
na 7 jaar. Die periode was doorspekt met de nodige doodlopende on-
derzoeksrichtingen en dubieuze projecten, maar werd gelukkig afgerond
met het successvolle onderzoek dat ik nu in dit boek kan presenteren.

Vooreerst wil ik mijn promotor, Bjorn De Sutter, bedanken om dit
onderzoek mogelijk te maken. Zijn inzichten bleken essentieel bij het
verwerven van de nodige IWT en FWO beurzen. Ook bij het schrijven
van wetenschappelijke artikels was hij steeds van de partij om te waken
over de kwaliteit, en densiteit, van het afgeleverde werk.

Ook de andere leden van de examencommissie wil ik van harte be-
danken, om de tijd te nemen om dit proefschrift te lezen en er kritische
vragen over te formuleren. I would like to thank prof. Christophe Dubach
for his critical but constructive view on my work, and for taking the time
to travel to Ghent and be part of my examination committee.

A very special word of thanks goes out to prof. Alan Edelman and
Viral Shah, for inviting me to MIT and hosting me for 5 months. The
time I spent there reinvigorated my research, and has made it possible
for me to graduate today. Valentin, Jarrett, Andreas, Jiahao: you guys
are great, and I will fondly remember my time at the Julia Lab.

Ik wil natuurlijk ook alle collega’s in Gent bedanken, en in het bijzon-
der mijn bureaugenoten van de afgelopen jaren: Bart, Bert, Christophe,
Jens, Jonas, Panagiotis, Pieter, Ronald, Sander, en Stijn; jullie waren
er altijd om de onderzoekseilanden te overbruggen en een aangename
werksfeer te creëeren. Bart, als schaduwpromotor was jij er voor alle
praktische zaken, of gewoon voor wat weetjes over de universiteit.

Ten slotte wil ik mijn familie en vrienden bedanken voor het leven
buiten dit onderzoek. Jullie waren er altijd voor de nodige reality check,
in een wereld waar IT niet altijd zo belangrijk is. Liesa, zonder jou zou
dit alles veel minder zin hebben. Bedankt om mee te gaan in dit verhaal
en het avontuur dat ons nog te wachten staat.

Tim Besard
Gent, 1 juni 2019

iv

Samenvatting
Softwareontwikkeling is lange tijd gestoeld geweest op hardware die

exponentieel krachtiger werd, waardoor ook de complexiteit van applica-
ties enorm is kunnen toenemen. Deze periode is echter voorbij: traditio-
nele CPUs (Central Processing Units) verdubbelen niet langer elke paar
jaar in snelheid, waardoor rekenintensieve applicaties steeds frequenter
gebruik moeten maken van hardwareversnellers zoals GPUs (Graphics
Processing Units).

Tezelfdertijd blijft ook de vraag naar steeds krachtiger en complexere
applicaties bestaan. Aan deze behoefte is moeilijk te voldoen met tra-
ditionele programmeertalen, zoals C en C++, die veel expertise eisen
van de programmeur. Bijgevolg winnen zogenaamde hoogniveau-talen,
zoals Python en MATLAB, snel aan populariteit. Deze programmeer-
talen werken op een hoog abstractieniveau waar de programmeur kan
focussen op applicatielogica zonder aandacht te spenderen aan hoe die
applicatie uiteindelijk zal uitgevoerd worden.

Het is echter moeilijk om hoogniveau-talen te gebruiken om hard-
wareversnellers zoals GPUs te programmeren. Vooreerst berust het ont-
werp van deze talen vaak op elementen die slecht combineren met externe
processoren, zoals interpretatie of dynamische compilatie. Tegelijk wor-
den hardwareversnellers hoofdzakelijk gebruikt om de prestatie te ver-
hogen, terwijl hoogniveau-programmeertalen focussen op productiviteit
zelfs als dat ten koste gaat van prestatie. Daarom worden hardware-
versnellers voornamelijk geprogrammeerd met laagniveau-talen die een
goede prestatie garanderen, in combinatie met een hoogniveau-taal om
de overige applicatielogica te implementeren.

Deze splitsing van een applicatie in twee of meer talen, waarbij de ene
dient om prestatiegevoelige code te implementeren en de andere om op
productieve wijze de applicatielogica te definiëren, levert veel problemen
op. Het gebruik van meerdere talen werpt in essentie een barrière op die
zowel hergebruik, abstractie, en optimalisatie van code verhindert, maar
ook samenwerking tussen programmeurs bemoeilijkt.

vi SAMENVATTING

In dit proefschrift reiken we een alternatief aan, waarbij we één
enkele hoogniveau-programmeertaal gebruiken voor zowel ap-
plicatielogica als GPU-code. Hierbij behouden we de productiviteit
van de hoogniveau-taal zonder daarbij in te boeten op de prestatie van
code wanneer die uitgevoerd wordt op de hardwareversneller. We bou-
wen hiervoor verder op de Julia programmeertaal, een hoogniveau-taal
die specifiek ontworpen geweest is voor efficiënte uitvoering op CPUs.

Om code geschreven in Julia uit te voeren op een processor zoals
een GPU is een nieuwe back end nodig voor de compiler, die broncode
omzet naar machinecode voor uitvoering. Traditioneel worden deze al-
ternatieve back ends verweven met de bestaande compiler, of wordt er
zelfs een geheel aparte implementatie van de programmeertaal voorzien
die specifiek is voor een bepaalde processor.

Als onderdeel van dit onderzoek definiëren we interfaces tot de
hoogniveau-compiler voor het implementeren van dynamische
back ends. Hiermee wordt het mogelijk een nieuwe back end te ont-
wikkelen zonder die in de bestaande compiler te moeten integreren en
daarvoor te moeten voldoen aan eisen op vlak van kwaliteit of licentie.
Toch wordt de bestaande compiler hergebruikt waardoor nieuwe back
ends snel en efficiënt geïmplementeerd kunnen worden. Tegelijk wordt
een parallelle implementatie vermeden, wat de compatibiliteit van bron-
code met verschillende back ends ten goede komt.
We hebben deze interfaces toegevoegd aan de Julia programmeertaal,
en de implementatie ervan bijgedragen aan het bijhorende open-source
project. De interfaces bieden toegang tot de verschillende IRs (Interme-
diate Representations) zoals ze bestaan in de Julia compiler, waaronder
IR code van de LLVM (Low Level Virtual Machine) bibliotheek die de
compiler gebruikt. Om efficiënt met deze IR te werken hebben we het
pakket LLVM.jl ontwikkeld om toegang te krijgen tot de LLVM API
(Application Programming Interface) vanuit Julia.

We demonstreren vervolgens het potentieel van deze interfaces aan
de hand van een GPU back end voor Julia. Deze back end, beschik-
baar als open-source software onder de naam CUDAnative.jl, maakt het
mogelijk om Julia code uit te voeren op CUDA (Compute Unified Device
Architecture) GPUs. De prestatie van deze hoogniveau-code is vergelijk-
baar met equivalente laagniveau-code geschreven in CUDA C, wat we
aantonen aan de hand van de Rodinia benchmark suite voor heterogene
applicaties. Het programmeren van hoogniveau-code in Julia is echter
veel productiever, minder foutgevoelig, en vereist geen bijkomende ex-
pertise op vlak van andere, laagniveau-programmeertalen.

SAMENVATTING vii

Julia biedt als hoogniveau-programmeertaal tevens taalconstructies
die het mogelijk maken om krachtige abstracties te definiëren. Automa-
tische specialisatie van generieke code kan bijvoorbeeld gebruikt worden
voor hogere-orde reeksabstracties. Hiermee kunnen abstracte operaties
op reeksen gescheiden worden van hun concrete implementatie die be-
paalt in welk geheugen de elementen zich bevinden, hoe de operatie uit-
gevoerd wordt, etc. Dit resulteert in compacte en leesbare code, waarbij
de hoogniveau-programmeur geen kennis moet hebben van hoe de on-
derliggende datastructuur geïmplementeerd is.

Aan de hand van de CUDAnative.jl GPU back end hebben we on-
derzoek gevoerd naar dergelijke reeksabstracties voor GPUs zon-
der de typische barrière tussen hoogniveau-applicatiecode en laagniveau-
infrastructuur. We hebben dit geïmplementeerd in het open-source
CuArrays.jl pakket, en hebben ermee aangetoond dat deze abstracties
krachtig genoeg zijn om realistische applicaties te implementeren. De ap-
plicaties zijn tevens platform-agnostisch aangezien ze gebruik maken van
hogere-orde reeksabstracties. We hebben aangetoond dat hiermee appli-
caties eenvoudig uitgevoerd kunnen worden op CPUs, GPUs met CuAr-
rays.jl, en andere platformen zoals gedistribueerde clusters van CPUs en
GPUs met DistributedArrays.jl.

Tenslotte tonen we aan dat reeksabstracties ook nuttig kunnen zijn
voor algoritmische optimalisaties, zoals het automatisch afleiden van
reeksoperaties op de GPU. Dergelijke afgeleiden zijn noodzakelijk
voor het berekenen van gradiënten zoals ze voorkomen bij neurale net-
werken en andere ML (Machine Learning) applicaties. Vaak wordt de
programmeur echter beperkt tot welbepaalde operaties waarvoor de af-
geleide reeds geïmplementeerd is. Met behulp van automatische diffe-
rentiatie kan arbitraire code afgeleid worden, maar vaak ten koste van
prestatie. Door gebruik te maken van de structuur van de broadcast
reeksabstractie kunnen we operaties toch efficiënt afleiden, zelfs wan-
neer de operatie gebruik maakt van dynamisch controleverloop. Onze
implementatie van deze techniek in Julia bouwt verder op CuArrays.jl,
waardoor ook uitvoering op de GPU mogelijk is.

viii SAMENVATTING

De compilerinterfaces en bijhorende GPU back end uit dit proef-
schrift vormen een belangrijke basis voor onderzoek naar programmeren
op hoog niveau en abstracties voor hardwareversnellers met een alge-
mene, niet-domeinspecifieke programmeertaal. We hebben aangetoond
hoe ons werk het programmeren van GPUs in Julia vereenvoudigt en
verbetert, en dit op verschillende abstractieniveaus. Hoewel belangrijk,
zijn deze verbeteringen slechts incrementeel en verwachten we dat toe-
komstig onderzoek de hoogniveau-mogelijkheden van de Julia program-
meertaal verder zullen benutten voor krachtiger abstracties en nieuwe
GPU programmeermodellen.

Summary
Software development has long been based on hardware that grows

exponentially faster, which has allowed application complexity to in-
crease accordingly. This free lunch is over, however, and traditional
CPUs (Central Processing Units) don’t double their performance ev-
ery couple of years anymore. As a result, compute-intensive applica-
tions have increasingly been relying on hardware accelerators like GPUs
(Graphics Processing Units) to satisfy their computational demands.

At the same time, the demand for powerful and complex applications
remains. Traditional programming languages, like C and C++, are ill-
suited to meet this demand since they require significant programmer
expertise. Instead, high-level languages like Python and MATLAB have
been gaining popularity as they allow the programmer to focus on appli-
cation logic and not care about how that application will be executed.

However, it is difficult to use high-level languages to program hard-
ware accelerators like GPUs. First and foremost, the design of these
languages often relies on techniques that are not compatible with exter-
nal accelerators, such as interpretation and dynamic compilation. At
the same time, hardware accelerators are mostly used to improve per-
formance, while high-level languages focus on productivity even at the
expense of performance. As a result, accelerators are typically pro-
grammed with low-level languages that guarantee good performance,
in combination with a high-level language to implement the remaining
application logic.

Partitioning an application into two or more languages, where one
language is used to implement performance-sensitive code and another
for the application logic, causes many problems. The use of multiple lan-
guages essentially introduces a barrier that prevents reuse, abstraction
and optimization of code, but also complicates communication between
programmers working on different parts of the codebase.

x SUMMARY

In this dissertation, we present an alternative approach where a sin-
gle high-level language is used to implement both application
logic and GPU code. We do so while maintaining the productivity
of the high-level language, without sacrificing the performance of code
when it is executed on the hardware accelerator. We start from the exist-
ing Julia programming language, a high-level, general-purpose language
that was specifically designed for efficient execution on CPUs.

To execute Julia code on an accelerator like a GPU, we need to add
a back end to its compiler. This part of the language implementation is
responsible for lowering source code to executable machine code. Tradi-
tionally, alternative back ends are either added to and integrated with
the existing compiler, or implemented as a wholly separate compiler
specific to one particular accelerator.

As part of this research, we define interfaces to the high-level
compiler for implementing external back ends. With these in-
terfaces, it is possible to develop a new back end without having to
integrate with the existing compiler and, e.g., comply with its require-
ments in terms of code quality or licensing. At the same time, existing
compiler functionality is reused, which greatly lowers the required ef-
fort to implement a new back end. By avoiding a separate compiler,
code compatibility between individual back ends is also improved and
inevitable differences between implementations are avoided.
We have added these interfaces to the Julia programming languages,
and contributed their implementation to the corresponding open-source
project. The interfaces grant access to the different IRs (Intermedi-
ate Representations) as they exist throughout the compilation process,
which includes IR code of the LLVM (Low Level Virtual Machine) library
that the Julia compiler uses. To interact efficiently with this library, we
have created the LLVM.jl package to interface with the LLVM API (Ap-
plication Programming Interface) from Julia.

We then demonstrate the potential of these interfaces by implement-
ing a GPU back end for the Julia language. This back end, avail-
able as an open-source package under the name CUDAnative.jl, makes
it possible to execute Julia code on CUDA (Compute Unified Device
Architecture) GPUs. The performance of this high-level GPU code is
comparable to equivalent low-level code written in CUDA C, which
we demonstrate using the Rodinia benchmark suite for heterogeneous
computing. However, high-level GPU programming in Julia is much
more productive, less error prone, and requires no additional expertise
in terms of other, low-level programming languages.

SUMMARY xi

As a high-level language, Julia has several language features that
enable powerful abstractions. For example, automatic specialization of
generic code can be used to build higher-order array abstractions. These
abstractions can be used to separate abstract operations on arrays from
their concrete implementation responsible for allocating memory, exe-
cuting the operation, etc. This results in concise and readable code, and
does not require the high-level programmer to know how the underlying
data structure is implemented.

Using the CUDAnative.jl GPU back end, we have conducted research
into these array abstractions for GPUs without the typical barrier
between high-level application code and low-level infrastructure. We
have implemented this research in the CuArrays.jl package, and used
it to demonstrate how array abstractions are powerful enough to imple-
ment realistic applications. Courtesy of the Julia’s higher-order array
abstractions, these implementations are platform-agnostic. We illustrate
this by executing the applications on a variety of platforms, including
CPUs, GPUs with CuArrays.jl, and distributed clusters of CPUs and
GPUs using DistributedArrays.jl.

Finally, we show that array abstractions are also useful for algorith-
mic optimizations, such as automatic differentiation of GPU array
abstractions. Differentiation is necessary to compute gradients as they
occur in neural network and other ML (Machine Learning) applications.
Typically, the programmer is restricted to specific operations for which
the derivative has already been implemented. Using automatic differen-
tiation, arbitrary code can be derived, but often at the expense of perfor-
mance. By exploiting the structure of the broadcast array abstraction,
we can efficiently differentiate operations even when they use dynamic
control flow. Our implementation in Julia builds on CuArrays.jl, which
makes it possible to use our technique on the GPU.

The compiler interfaces and accompanying GPU back end as pre-
sented in this dissertation provide an important basis for research into
high-level programming and abstractions for hardware accelerators using
a general-purpose programming language. We have demonstrated this
by improving the GPU programming experience in Julia at different lev-
els of abstraction. These improvements are significant but incremental,
and we expect future research to fully exploit the high-level features of
the Julia language for the purpose of novel abstractions and new GPU
programming models.

xii SUMMARY

Contents
Nederlandstalige samenvatting v

English summary ix

1 Introduction 1
1.1 Context . 1
1.2 Key Challenges . 1
1.3 The Julia Programming Language 2
1.4 Structure and Contributions 2

1.4.1 Other Contributions 4

2 Dynamic Compiler Back Ends 7
2.1 Proposed Toolchain . 8
2.2 Related Work . 9
2.3 Background: The Julia Programming Language 10

2.3.1 Design . 11
2.3.2 Implementation . 15
2.3.3 Metaprogramming 16

2.4 Language Interfaces . 17
2.4.1 Parameters and Hooks 18
2.4.2 Future Extensions 19

2.5 Code Generation . 20
2.5.1 Extended LLVM IR Metaprogramming 20
2.5.2 LLVM Wrapper . 21

3 CUDA Language Implementation 29
3.1 Background and Related Work 30
3.2 Structure . 31
3.3 Standard Library . 33

3.3.1 Implementation . 34
3.3.2 Pointers with Address Spaces 35
3.3.3 NVIDIA Device Library 37

3.4 Compiler Back End . 37
3.4.1 Compilation Process 38
3.4.2 Optimization Passes 39

3.5 CUDA API Wrapper . 44

xiv CONTENTS

3.6 Run-Time System . 47
3.6.1 Kernel Launching 47
3.6.2 Interactive Programming 49
3.6.3 Reflection and Introspection 50

3.7 Evaluation . 50
3.7.1 Experimental Set-Up 53
3.7.2 Methodology . 53
3.7.3 Kernel Performance 55
3.7.4 Compilation Overhead 57
3.7.5 Application Performance 58
3.7.6 Run-Time System Performance 59
3.7.7 Lines of Code . 60

4 High-Level Array Programming with GPUs 61
4.1 Example Applications . 62

4.1.1 Power Iteration . 62
4.1.2 Proximal Gradient Descent 63
4.1.3 Kronecker Product 65

4.2 Related Work . 68
4.3 Background: Array Programming in Julia 69

4.3.1 Higher-Order Array Abstractions 70
4.3.2 Dot Expressions 72
4.3.3 Broadcast Fusion 72

4.4 Heterogeneous Programming with Arrays 73
4.4.1 Array Type Hierarchy 73
4.4.2 AbstractArray Interface 74
4.4.3 broadcast Abstraction 76

4.5 CuArrays.jl . 77
4.5.1 Array Operations 77
4.5.2 Higher-Order Abstractions 81
4.5.3 Memory Management 83
4.5.4 Low-level Flexibility 84

5 Array Programming for Portability 87
5.1 Background and Related Work 88
5.2 DistributedArrays.jl . 89
5.3 Evaluation . 91

5.3.1 Application Portability 91
5.3.2 Library Portability 93
5.3.3 Array Infrastructure Portability 96

5.4 Performance . 98
5.4.1 Power Iteration . 99

CONTENTS xv

5.4.2 Performance of DistributedArrays.jl 102
5.4.3 Kronecker Product 103
5.4.4 Proximal Gradient Descent 105

5.5 Optimization Opportunities 107
5.5.1 Array Programming 107
5.5.2 Multiple Dispatch 108

6 Automatic Differentiation of GPU Broadcast Kernels 111
6.1 Related Work . 112
6.2 Background: Automatic Differentiation 112

6.2.1 Forward Mode . 113
6.2.2 Reverse Mode . 115
6.2.3 Forward vs. Reverse Mode 116
6.2.4 Mixed Mode . 117

6.3 Evaluation . 119
6.3.1 HM-LSTM Cell Update 119
6.3.2 Reverse-Mode TensorFlow 119
6.3.3 Reverse-Mode Julia 120
6.3.4 Forward-Mode Julia 123

6.4 Performance . 124
6.4.1 Reverse Mode . 124
6.4.2 Forward Mode . 126
6.4.3 Broadcast Arity 127

7 Status and Future Work 129
7.1 Code . 129
7.2 Future Work . 130

8 Conclusion 133

xvi CONTENTS

List of Tables
2.1 Existing metaprogramming interfaces in the Julia pro-

gramming language to access compiler IRs. 16
2.2 Additional interfaces to the Julia compiler for controlling

code generation processes. 18

3.1 Overview of CUDA functionality provided by the CUDA-
native.jl standard library for kernel programming. 34

3.2 Features and performance of selected Rodinia benchmarks
implemented in CUDA C. 54

3.3 Features and performance of selected Rodinia benchmarks
implemented in Julia using CUDAnative.jl 54

3.4 Default input parameters from Rodinia 3.1 55
3.5 Performance comparison of selected Rodinia benchmarks

implemented in Julia using CUDAnative.jl vs CUDA C. . 56
3.6 GPU and CPU execution times for launching an empty

kernel from CUDA C and Julia. 59

4.1 Lowering of different forms of broadcast syntax. The last
example illustrates fusion of elementwise operations. . . . 72

4.2 Methods that make up the public broadcast interface and
can be implemented to support or customize the behavior
of broadcast operations. 78

xviii LIST OF TABLES

List of Figures
2.1 Abstract overview of the proposed toolchain that improves

reuse of existing compiler functionality. 8
2.2 Overview of the CPython and Numba compilation pro-

cesses for host and device code. 10
2.3 Overview of the compilation process for Julia code. 14

3.1 Overview of the compilation process for Julia code with
CUDAnative.jl by means of the compiler extension inter-
faces from Chapter 2. 32

3.2 Visualization of the GPU kernel performance ratio from
Table 3.5 of selected Rodinia benchmarks implemented in
Julia using CUDAnative.jl vs CUDA C. 56

3.3 Lines of host and device code of selected Rodinia bench-
marks in Julia and C. 60

5.1 Time to compute the dominant eigenvector and eigen-
value of a N ×N matrix. 100

5.2 Time to compute matrix norm of the Kronecker product
of two N ×N matrices. 104

5.3 Time to perform proximal gradient descent to optimize a
neural network with N outputs. 106

6.1 Partial HLO graph as emitted by the TensorFlow XLA
compiler for the HM-LSTM cell-update calculation. 121

6.2 Total kernel compute times for the HM-LSTM cell-update
calculation across different AD implementstions. 125

6.3 Total kernel compute and application execution times for
the Julia forward-mode implementation, with random con-
trol inputs vs. warp-uniform control inputs. 127

6.4 Effects of increasing operation arity on GPU compute uti-
lization, memory bandwidth utilization, and kernel occu-
pancy of a Tesla V100. 127

xx LIST OF FIGURES

List of Acronyms
AD . Automatic Differentiation

API Application Programming Interface

AST . Abstract Syntax Tree

BLAS Basic Linear Algebra Subroutines

CFG . Control Flow Graph

CI . Continuous Integration

CPU . Central Processing Unit

CUB . CUDA Unbound

CUDA Compute Unified Device Architecture

DSL . Domain Specific Language

FFI . Foreign Function Interface

GC . Garbage Collector

GPU . Graphics Processing Unit

HLO . High Level Optimizer

HM-LSTM Hierarchical Multiscale LSTM

HPC High-Performance Computing

I/O . Input/Output

IACA Intel Architecture Code Analyzer

IPC Inter-Process Communication

IR . Intermediate Representation

ISA . Instruction Set Architecture

JIT . Just-In-Time

xxii LIST OF ACRONYMS

LAPACK Linear Algebra Package

LLVM Low Level Virtual Machine

LMS Lightweight Modular Staging

LOC . Lines Of Code

MCA . Machine Code Analyzer

ML . Machine Learning

MLIR . Multi-Level IR

MPI . Message Passing Interface

NUMA Non-Unified Memory Architecture

NVTX . NVIDIA Tools Extensions

NVVM NVIDIA Virtual Machine

OJA Optimal Jacobian Accumulation

OpenCL Open Compute Language

PTX . Parallel Thread Execution

RDMA Remote Direct Memory Access

RPC . Remote Procedure Call

SDK . Software Development Kit

SM . Shared Multiprocessor

SPMD Single Program, Multiple Data

SSH . Secure Shell

TPU . Tensor Processing Unit

WMMA Warp Matrix Multiply and Accumulate

XLA . Accelerated Linear Algebra

Chapter 1
Introduction
1.1 Context

In recent years, the performance of traditional microprocessors has not
increased as it used to in the decades before. Commonly attributed
to the end of Moore’s law, this evolution drives hardware vendors and
software developers alike to look at accelerators, specialized processors
that are optimized for specific, typically parallel workloads, and perform
much better at them than general-purpose processors [82, 151, 135, 119,
3]. Multiple hardware vendors are working on such accelerators and
release many new devices every year. One of the most popular and
ubiquitous hardware accelerators are GPUs (Graphics Processing Units):
Originally designed for massively-parallel graphics workloads, they are
well-suited to support the ever higher computational demands of, among
others, the machine-learning community [147].

At the same time, contemporary software is large and complex which
necessitates the use of development tools that focus on programmer pro-
ductivity [146, 64, 54, 85, 75, 143]. High-level programming languages
are one such tool, and have gained significant traction over the past
decade [145]. One area where high-level programming languages have
not broken through, however, is that of accelerator programming: Hard-
ware vendors typically only provide low-level toolchains that focus on
reaching peak performance at the cost of developer productivity, while
the design of many high-level languages makes them unsuitable for effi-
cient execution on these platforms [95].

1.2 Key Challenges

To use hardware accelerators efficiently with high-level languages, sev-
eral key challenges need to be addressed. First and foremost, code writ-
ten in the language needs to be compiled to a representation that is
suitable for execution on the accelerator. This conversion should not
introduce any run-time overhead, i.e., it should be possible to match the
performance of low-level languages despite using a high-level language.

2 CHAPTER 1. INTRODUCTION

Adding support for a new hardware platform to a given programming
language typically involves modifying or rewriting part of its compiler.
This is a laborious task, exacerbated by the fact that many new hardware
accelerator platforms are released every year. Instead, the design of the
programming language and its compiler should be adapted such that
new platforms can be targeted more efficiently.

Where low-level programmers are used to writing code at a low ab-
straction level, high-level languages encourage to think and work with
much more abstract programming constructs. In many high-level lan-
guages, however, these constructs are constrained by their so-called “two-
language” design: Performance-critical codes are implemented in a low-
level language, impeding optimizations and restricting usability. We
propose to use abstractions that are defined in the language itself, and
make it possible to compose the abstraction with arbitrary user code for
the purpose of performance, productivity and portability.

1.3 The Julia Programming Language
The contributions of this dissertation are built in and make use of the
Julia programming language. This high-level language is built on the
LLVM (Low Level Virtual Machine) toolkit, a comprehensive compila-
tion framework used by many industrial-strength compilers. Both Julia
and LLVM are open-source projects and are developed by a global com-
munity consisting of both industry and academic contributors.

We chose to work with the Julia programming language because of
the design of its compiler: Use of the LLVM toolkit and its many hard-
ware back ends facilitates research into hardware accelerators. Crucially,
the language was co-designed with an LLVM-based compiler in mind,
driving language design decisions that improve the ability to generate
high-quality machine code from high-level source code. The compiler
and its intermediate representations are also accessible through first-
class objects and interfaces, facilitating research into programming lan-
guages and extensions thereof. These elements will be discussed in Chap-
ter 2, and are essential to our work on aGPU compiler.

1.4 Structure and Contributions
This dissertation presents abstractions and techniques that enable ef-
ficient use of high-level languages on hardware accelerators. Instead
of designing a new domain-specific language, or working with libraries
written in a low-level language, we adapt and repurpose the existing

1.4. STRUCTURE AND CONTRIBUTIONS 3

general-purpose Julia language and its compiler to provide a produc-
tiveGPU programming environment with several novel features that
improve programmer productivity without sacrificing performance.

Each chapter in this dissertation starts with a short introduction to
summarize my personal contributions as well as the scientific novelty
of the research presented in that chapter. This is followed by a brief
overview of related work as well as necessary background information.

In Chapter 2 I describe the Julia programming language, and my
work on compiler interfaces for dynamic compiler back ends. I show
how these interfaces can be used to extend the language and its compiler
beyond the primary target it was developed for. The interfaces have been
contributed to the upstream Julia compiler, and empower multiple back
ends and compiler extensions.

In Chapter 3, I describe the GPU back end I have researched and
developed on top of these compiler capabilities. This back end is avail-
able as the open-source CUDAnative.jl package, and is compatible with
the latest stable version of Julia. In this chapter, I also demonstrate the
use and describe the implementation of high-level Julia language fea-
tures for GPUs, and argue that they significantly improve programmer
productivity without sacrificing performance.

These chapters are based on a journal publication and a talk:

• Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective
Extensible Programming: Unleashing Julia on GPUs”. In: Trans-
actions on Parallel and Distributed Systems (TPDS) (2018). issn:
1045-9219. doi: 10.1109/TPDS.2018.2872064. arXiv: 1712.03112
[cs.PL]

• Tim Besard. “Just Compile It: High-level Programming on the
GPU with Julia”. Presented at the European LLVM Developers
Meeting (EuroLLVM). 2019

In Chapter 4 I explain Julia’s array interfaces and show how the com-
piler from Chapter 3 makes it possible to implement these abstractions
for GPU arrays, and how they can be used to implement realistic GPU
applications. I argue that this approach offers unprecedented flexibility,
appealing to both GPU experts and novice programmers. I worked on
this approach as part of the CuArrays.jl package.

In Chapter 5 I argue how the design of Julia’s array abstractions
also facilitates portability of code. I demonstrate how this applies to the
infrastructure from Chapter 4, with a variety of use cases.

https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112
https://arxiv.org/abs/1712.03112

4 CHAPTER 1. INTRODUCTION

These chapters are based on a journal publication:

• Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De
Sutter. “Rapid Software Prototyping for Heterogeneous and Dis-
tributed Platforms”. In: Advances in Engineering Software (AES)
(2019). doi: 10.1016/j.advengsoft.2019.02.002

Finally, in Chapter 6 I argue how the structure of array abstractions
can be used for high-level algorithmic optimizations. Specifically, I de-
scribe my work on automatic differentiation of fused broadcast expres-
sions, executed on the GPU by means of the CUDAnative.jl compiler.
The performance of these kernels is competitive to state-of-the-art tensor
compilers that are part of current machine-learning frameworks.

This chapter is based on a workshop presentation:

• Jarrett Revels, Tim Besard, Valentin Churavy, Bjorn De Sutter,
and Juan Pablo Vielma. “Dynamic Automatic Differentiation of
GPU Broadcast Kernels”. Presented at the Workshop on Systems
for ML at the Conference on Neural Information Processing Sys-
tems (NeurIPS). 2018. arXiv: 1810.08297 [cs.MS]

Each of these contributions are available as free and open source
software on the GitHub.com public code hosting platform, along with
documentation, examples, and unit tests. I describe in Chapter 7 how
this open-source nature has facilitated collaboration and enabled new
applications based on this research.

1.4.1 Other Contributions
In addition to the contributions I present in this dissertation, I have also
contributed to the following academic works during my PhD research:

• Tim Besard, Bjorn De Sutter, Andrés Frías-Velázquez, and Wil-
fried Philips. “Case Study of Multiple Trace Transform Implemen-
tations”. In: International Journal of High Performance Comput-
ing Applications (IJHPCA) 29.4 (2015), pp. 489–505. doi: 10.
1177/1094342015584091

• Mike Innes, Stefan Karpinski, Viral Shah, David Barber, Pontus
Stenetorp, Tim Besard, James Bradbury, Valentin Churavy, Si-
mon Danisch, Alan Edelman, Jon Malmaud, Jarrett Revels, and
Deniz Yuret. “On Machine Learning and Programming Languages”.
Presented at the Conference on Systems and Machine Learning
(SysML). 2018

https://doi.org/10.1016/j.advengsoft.2019.02.002
https://arxiv.org/abs/1810.08297
https://doi.org/10.1177/1094342015584091
https://doi.org/10.1177/1094342015584091

1.4. STRUCTURE AND CONTRIBUTIONS 5

I have also organized the third Belgian Julia user meetup in Ghent,
and presented the following Julia-related talks throughout my PhD:

• Tim Besard. “High-Level GPU Programming with CUDA.jl”. Pre-
sented at the first Belgian Julia user meetup (Ghent, Belgium,
Sept. 29, 2015)

• Tim Besard. “Julia on the GPU”. Presented at the second Belgian
Julia user meetup (Brussels, Belgium, Apr. 13, 2016)

• Tim Besard, Valentin Churavy, and Simon Danisch. “GPU Pro-
gramming with Julia”. Presented at JuliaCon 2017 (Berkeley, CA,
United States, June 20, 2017)

• Tim Besard. “Programming NVIDIA GPUs in Julia with CUDA-
native.jl”. Presented at JuliaCon 2017 (Berkeley, CA, United
States, June 21, 2017)

• Tim Besard. “Interfacing with LLVM using LLVM.jl”. Presented
at JuliaCon 2017 (Berkeley, CA, United States, June 22, 2017)

• Tim Besard and Mike Innes. “Julia: A Fresh Approach to GPU
Computing”. Presented at the GPU Technology Conference (GTC)
(San Jose, CA, United States, Mar. 28, 2018)

• Tim Besard. “Effectively using GPUs with Julia”. Presented at
the third Belgian Julia user meetup (Ghent, Belgium, Dec. 21,
2018)

• Tim Besard. “High-Level Language Design for Extensible Accel-
erator Programming”. Presented at the Workshop on High-Level
Programming for Heterogeneous and Hierarchical Parallel Systems
(HLPGPU) at the Conference on High Performance and Embedded
Architecture and Compilation (HiPEAC) (Valencia, Spain, Jan. 23,
2019)

• Tim Besard. “Introduction to Julia”. Presented at the Belgian
TensorFlow user meetup (Ghent, Belgium, Feb. 6, 2019)

• Tim Besard. “High-Level Language Design for Extensible Accel-
erator Programming”. Presented at the Workshop on Embedded
Multicore Programming at the HiPEAC Computing Systems Week
(CSW) (Edinburgh, United Kingdom, Apr. 17, 2019)

6 CHAPTER 1. INTRODUCTION

Chapter 2
Dynamic Compiler
Back Ends

In this chapter, we propose a set of interfaces to the high-level lan-
guage’s compiler for accessing its different IRs (Intermediate Representa-
tions) and the processes that generate and optimize that IR. With these
interfaces, developers can influence the existing language implementa-
tion and, e.g., improve compatibility with new hardware or run-time
environments without having to modify the existing implementation or
create a new compiler altogether.

We will describe the design of these interfaces, as implemented in the
Julia programming language. This high-level language already features
powerful multi-stage metaprogramming capabilities as well as other de-
sign elements that make it ideally suited for research into language exten-
sions. In Chapter 3 we will demonstrate the use of our added language
interfaces to create aGPU back end for Julia.

The scientific contributions of this chapter consist of the de-
sign of programming interfaces to the high-level compiler, and
their realization as part of the Julia programming language, for
the purpose of reducing the effort to create new compiler back
ends and extend programming languages to a new platform or
environment. These contributions have been published in a
peer-reviewed journal.1

1Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective Extensible Pro-
gramming: Unleashing Julia on GPUs”. In: Transactions on Parallel and Distributed
Systems (TPDS) (2018). issn: 1045-9219. doi: 10.1109/TPDS.2018.2872064. arXiv:
1712.03112 [cs.PL].

https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112

8 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

Host
Source code

Device
Source code

extensive
code reuse

Back-end

High-level
IR

Low-level
IR

Back-end

Middle-end

High-level
optims

Front-end
extensions

Middle-end
extensions

Low-level
optims

Front-end
Main compiler Device package

Figure 2.1: Abstract overview of the proposed toolchain that improves
reuse of existing compiler functionality. Dashed arrows indicate generic
interactions; solid arrows represent the flow of code.

2.1 Proposed Toolchain
Figure 2.1 shows an overview of the proposed toolchain. It features
several interfaces to work with the compiler and its intermediate repre-
sentations. An external device package uses the introduced interfaces
to add support for new hardware, without modifying the existing lan-
guage implementation. For example, it could refuse to generate code
for certain language features, such as exceptions or dynamic memory
allocations, or replace them with compatible or optimized alternatives.

Such a setup has multiple advantages. For one, it keeps the exist-
ing language implementation stable, while new implementations can be
developed independently as external packages. This makes it easier to
experiment, as these packages do not need to meet the support, quality,
or licensing requirements of the existing implementation. It also makes
it easier to cope with the rapid development pace of accelerator hard-
ware, providing the means for vendors to contribute more effectively to
the language ecosystem.

Another important advantage is the ability to reuse the existing lan-
guage implementation. Our proposed compiler interfaces make it possi-
ble to share functionality between an existing language implementation
and external derivatives, avoiding needless reimplementation of compiler

2.2. RELATED WORK 9

functionality by reconfiguring the existing compiler to generate code that
is compatible with the platform at hand. Furthermore, the proposed in-
terfaces not only facilitate external language implementations, but also
improve compatibility with existing code as it avoids the inevitable dif-
ferences between individual compiler implementations.

In some cases, even more reuse of existing infrastructure than sug-
gested in Figure 2.1 is possible. When the back-end compiler used in the
general-purpose tool flow can also target accelerators, there is no need
to reimplement a device back end in the device package. Instead, that
existing back-end compiler can then be used for host and device code, as
will be the case for theGPU back end in Chapter 3. But even in other
situations it might not be necessary to reimplement a full device back
end in the device package: If third-party device code generators can be
reused, the device back end only has to translate the low-levelIR code
to an IR accepted by that third-party code generator.

Conceptually, the compiler interfaces shown in Figure 2.1 are gen-
erally applicable. Their actual instantiation, however, will be specific
to the host language and accelerator at hand. For this dissertation, we
will focus on the design the interfaces around a single language and
accelerator platform, respectively the Julia programming language and
CUDA (Compute Unified Device Architecture) GPUs. We expect fur-
ther research into such interfaces to generalize the design and improve
reusability across languages and accelerators [58]. Preliminary results
include work on targeting Google TPUs (Tensor Processing Units) with
XLA.jl [59] and WebAssembly with ExportWebAssembly.jl [138].

2.2 Related Work

There exist several high-level languages with support for programming
hardware accelerators through an external back end. However, these im-
plementations often reimplement large parts of the compiler, leading to
inevitable differences between both language implementations. For ex-
ample, Numba is a JIT (Just-In-Time) compiler for Python, building on
the CPython reference language implementation. As Figure 2.2 shows,
the Numba compiler takes Python bytecode and compiles it to optimized
machine code. Due to the high-level nature of Python bytecode, the
Numba interpreter and subsequent compilation stages duplicate much
functionality from CPython: CFG (Control Flow Graph) construction,
type inference, liveness analysis, and implementations of built-in func-
tions. As a result, each release of Numba is tailored to the specifics
of certain CPython versions, and needs to be updated when changes

10 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

minimal
code reuse

Parser

Codegen

High-level
optims

AST

CPython Numba

Host
Python code

Device
nopython code

CPU
interpreter

High-level
optims

Codegen

Low-level
optims

GPU
codegen

LLVM IRBytecode

Interpreter

Numba IR

Figure 2.2: Overview of the CPython and Numba compilation processes
for host and device code.

are made to the language implementation [87]. The semantics of code
also differ slightly depending on whether it is interpreted by CPython or
compiled with Numba [87], further impeding compatibility with existing
Python code.

The idea of extending an existing language implementation with ex-
ternal functionality has been extensively researched in the past, and has
seen a recent revival, but to our knowledge has not focused on extensibil-
ity of compiler processes for the purpose of targeting new hardware and
environments with minimal code duplication [139, 159]. Furthermore,
the proposed interfaces not only facilitate external language implemen-
tations, but also improve compatibility with existing code as it avoids
the inevitable differences between individual compiler implementations.

2.3 Background:
The Julia Programming Language

We chose to implement the proposed toolchain from Section 2.1 in the Ju-
lia programming language, a high-level, high-performance dynamic pro-
gramming language for technical computing [30]. It features a type sys-
tem with parametric polymorphism, multiple dispatch, powerful metapro-
gramming capabilities, and other high-level features [26]. The most re-
markable aspect of the language and its main implementation is speed:
carefully written Julia code performs exceptionally well on traditional

2.3. BACKGROUND 11

microprocessors, approaching the speed of code written in statically-
compiled languages like C or FORTRAN [31, 23, 123]. This is accom-
plished through compilation, lowering high-level source code to high-
quality, stand-alone machine code. Built on top of theLLVM toolkit,
which supports a great number of hardware platforms, the language and
its open-source implementation form a great basis for our research into
high-level language support for hardware accelerators.

2.3.1 Design

Julia’s competitive performance originates from clever language design
that avoids the typical compilation and execution uncertainties asso-
ciated with dynamic languages [27, 29]. For example, Julia features
a systemic vocabulary of types, with primitive types (integers, floats)
mapping onto machine-native representations. The compiler uses type
inference to propagate type information throughout the program, tag-
ging locations (variables, temporaries) with the type known at compile
time [107, 108]. If a location is fully typed and the layout of that type
is known, the compiler can often use stack memory to store its value.
In contrast, uncertainty with respect to the type of a location obligates
variably-sized heap allocations, with type tags next to values and dy-
namic checks on those tags as is common in many high-level languages.

Similarly, types are used to express program behavior and eliminate
execution uncertainty by means of multiple dispatch. This type of func-
tion dispatch, also called multimethods, selects an appropriate method
based on the run-time type of all of its arguments. It is a generalization
of single-dispatch polymorphism of, e.g., C++, in which only the type
of the this or self object is used to disambiguate a method call. For
example, Listing 1 does not use multiple dispatch and defines intersect
methods that only dispatch on the first argument, returning differently-
typed objects by branching on the type of values. Conversely, Listing 2
defines multiple methods that dispatch on all arguments, and conse-
quently are more narrowly-typed in terms of arguments and returned
values. In the case of a sufficiently typed call, this enables the compiler
to dispatch statically to the correct method and avoid run-time branches,
possibly even stack allocating the returned value if its layout is known.

Incorporating all arguments in dispatch also makes it possible to
overload methods that would be out-of-reach with single dispatch. For
example, Listing 3 defines a dual number type, an extension of real
numbers with an epsilon component for the purpose of, e.g., automatic
differentiation. Using multiple dispatch, we implement methods for al-
gebraic addition and multiplication that propagate epsilon components

12 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

1 function intersect(a::Rect, b)
2 if isa(b, Rect)
3 c = Rect(...)
4 else if isa(b, Line)
5 c = Line(...)
6 end
7
8 return c::Union{Rect,Line}
9 end

10
11
12 function intersect(a::Line, b)
13 if isa(b, Rect)
14 c = Line(...)
15 else if isa(b, Line)
16 c = Point(...)
17 end
18
19 return c::Union{Line,Point}
20 end

Listing 1: Single-dispatch polymorphism and branches that lead to type-
unstable functions, returning differently-typed objects based on run-time
values.

1 function intersect(a::Rect, b::Rect)
2 c = Rect(...)
3 return c::Rect
4 end
5
6 function intersect(a::Rect, b::Line)
7 c = Line(...)
8 return c::Line
9 end

10
11 # similar definitions for intersect(::Line, ...)

Listing 2: Functionality of Listing 1 expressed with multiple dispatch.

2.3. BACKGROUND 13

1 struct Dual{N<:Number} <: Number
2 re::N
3 ep::N
4
5 # constructor with default value for epsilon component
6 Dual{N}(re::N, ep::N=zero(N)) where {N} = new{N}(re, ep)
7 end
8
9

10 using Base: *, +
11
12 *(x::Dual, y::Dual) = Dual(x.re * y.re, x.ep*y.re + x.re*y.ep)
13 *(x::Dual, y::Number) = Dual(x.re * y, x.ep*y)
14 *(x::Number, y::Dual) = Dual(x * y.re, x*y.ep)
15
16 +(x::Dual, y::Dual) = Dual(x.re + y.re, x.ep + y.ep)
17 ...
18
19
20 A = Dual.(rand(Float64, 2,2))
21 B = rand(Complex{Int}, 2)
22 A * B

Listing 3: Illustration of multiple dispatch facilitating reuse by allowing
fine-grained method overloads.

14 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

Host
Julia code

LLVM CPU
back-end

Parser

AST

Low-level
optims

High-level
optims

Lowering

Codegen

Julia IR

LLVM IR

Julia compiler

Figure 2.3: Overview of the compilation process for Julia code.

by extending respectively the + and * functions from the standard li-
brary on lines 12 to 16. The definition on line 14 is not possible in a
single-dispatch language such as Python, where special methods __mul__
and __rmul__ exist specifically for the purpose of defining commutative
multiplication as a workaround to overcome the limitations of single-
dispatch. Such a workaround does not generalize, however, and fails to
compose with optimized functionality such as matrix-matrix multiplica-
tion as implemented in NumPy [148]. As a result, users would be forced
to reimplement larger pieces of functionality, while complicating reuse
of existing functionality. This pattern is especially common for opera-
tors, and the Julia standard library uses multiple dispatch extensively
to implement these methods [30].

Finally, the Julia language avoids features that would result in guar-
anteed run-time dynamism, or that would require extensive compiler
analyses to avoid so. The Python language, for example, defers certain
semantic evaluations such as function binding to the run-time phase.
This makes it hard or impossible to generate static code without compli-
cated compilation techniques like partial evaluation or deoptimization.
Instead, Julia enforces early function binding.

2.3. BACKGROUND 15

2.3.2 Implementation

The combination of this design and aggressive specialization on run-time
types enables the Julia compiler to generate mostly statically-typed in-
termediate code, without the need forJIT compilation techniques tradi-
tionally used by high-level language implementations (tracing, specula-
tive execution, deoptimization, etc.). This allows the Julia developers to
outsource the back-end part of the compilation flow to existing compiler
frameworks for static languages. In particular, the JuliaIR is a good
fit for theLLVM compiler framework, which is commonly used as a ba-
sis for industrial-strength compilers for static languages [90]. The Julia
compiler targets this framework by emitting LLVM IR as the low-level
IR from Figure 2.1, and uses the vast array of LLVM optimization passes
(often tailored for or assuming statically-typed straight-line IR) to opti-
mize code and ultimately compile it to high-performance CPU (Central
Processing Unit) machine code. Figure 2.3 shows this existing Julia com-
pilation tool flow. In the remainder of this chapter, we refer to it as the
main compiler because it is the part of the flow that will generate ma-
chine code for the main, general-purpose CPU(s) that serve as a host
to accelerators. The last main processing step, CPU code generation, is
implemented entirely by means of LLVM. To facilitate interactions with
this C++ library, those parts of the Julia compiler that interface with
LLVM are also written in C++, making it possible to directly invoke its
APIs (Application Programming Interfaces).

As a testament to the performance this design can achieve, most of
the Julia standard library is written in Julia itself (with some obvious
exceptions for the purpose of reusing existing libraries), while offering
good performance [31, 23]. The managed runtime library written in C is
very limited and only required for dynamic code that might trigger com-
pilation, and certain language features such as garbage collection and
stack unwinding. As a solution to the so-called two-language problem,
where multiple programming languages are required to implement the
performance and productivity parts of a single application, this greatly
lowers to barrier to contributing to the Julia project. Indeed, the num-
ber of contributors to the main Julia language repository is greater than
that of the Python reference implementation, despite the latter being a
significantly older and well-known project.2

2According to GitHub, the python/cpython repository dates back to Aug 9 1990
having 748 contributors as of 2019, while JuliaLang/julia dates back to Aug 23 2009
with 797 unique contributors.

16 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

Access Modify
1 AST 3 3

2 Julia IR 3 3

3 LLVM IR 3 3

Machine code 3 indirectly

Table 2.1: Existing metaprogramming interfaces in the Julia program-
ming language to access compiler IRs.

Coincidentally, this design also makes the language well-suited for
accelerator programming. Such hardware often features a different archi-
tecture and ISA (Instruction Set Architecture), operating independently
from the main processor, with control and data transfers happening over
a shared bus. In many cases, this makes it hard or impossible to share
code, such as runtime libraries, between host and device. With Julia,
however, it is entirely possible to write high-level code that compiles to
self-contained IR that does not rely on code or data on the host.

2.3.3 Metaprogramming
In addition, Julia features powerful multi-stage metaprogramming and
reflection capabilities, as shown in Table 2.1. Source code can be in-
trospected and modified using macros, or using the parse and eval
functions. The high-level JuliaIR is accessible with the code_lowered
and code_typed reflection functions, and can be modified with generated
functions. These mechanisms are powerful, flexible, and user-friendly,
because they have been co-designed together with the source language
and the tool flow in support of metaprogramming and reflection, and
because Julia is a homoiconic programming language, i.e., code can be
accessed and transformed as structured data from within the language.
As such, these interfaces already offer some of the flexibility required
to target new hardware, e.g., to define constructs with non-standard se-
mantics or special code generation without the need for new language
features. They do not, however, make it possible to influence or replace
the processes that generate IR. The resulting IR is often tailored to the
host microprocessor, and cannot be used for targeting other hardware.

Low-levelLLVM IR can be inspected by invoking code_llvm and in-
jected via the llvmcall metaprogramming interface. Machine code is
accessible through code_native and can be inserted indirectly as inline
assembly in LLVM IR. These interfaces are much less powerful and flex-
ible, however. Most importantly, the interfaces to LLVM IR only pass

2.4. LANGUAGE INTERFACES 17

string representations of the IR code. This generic and neutral form
of interface fits the separation of concerns between Julia and LLVM,
but restricts its usefulness. It suffices for the main compiler because
(i) typical metaprogramming and reflection codes do not require access
to LLVM IR or machine code, (ii) llvmcall is currently only needed by
the standard library to inject small, literal snippets of LLVM IR, e.g.,
to add support for atomics, and (iii) the main compiler is implemented
mostly in C++, and thus has direct access to the LLVMAPIs.

2.4 Language Interfaces

As a starting point to generate accelerator code, the language should
offer access to the code at different stages of compilation, such as ASTs
(Abstract Syntax Trees),IRs, and machine code. This makes it possible
for programmers to implement functionality that cannot be expressed
in source code by generating one of these intermediate forms of code,
without the need to alter the language or compiler. It can also be used
to transform IR, or use it as a starting point for further compilation.

This kind of multi-stage metaprogramming is a common approach
for retargeting a language and its implementation. The technique is typ-
ically used to build high-performance abstractions through custom code
generation. Examples include MetaML [142], Scala’s LMS (Lightweight
Modular Staging) and its derivatives [128, 115, 141], etc. However, reuse
of compiler functionality is often limited, and the multi-stage program-
ming interfaces typically require invasive syntax or use of special types
that may not compose well with existing code. Other approaches, such
as Google’s MLIR (Multi-Level IR), introduce stages in the compiler
IR [91]. Mainly designed to facilitate reuse of compiler functionality
across front and back ends, it does however not offer the same flexibility
as staging at the language level.

In the case of the Julia programming language, too, there exist sev-
eral metaprogramming interfaces that provide access to code at differ-
ent stages of compilation, as shown in Table 2.1. Together with the
performance-oriented design described before, they have enabled use
of Julia beyond the primary target it was developed for, such as mul-
tithreaded systems with ParallelAccelerator.jl [5], and OpenCL (Open
Compute Language)GPUs with CLArrays.jl [77]. However, due to the
limited scope of the metaprogramming interfaces, these packages have
had to reimplement significant parts of the compiler while needing to
keep up with upstream development. This is a laborious task. Case in
point, both packages have not yet been updated to work with Julia 1.0.

18 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

Reconfigure Replace
AST - -
4 Julia IR InferenceParams InferenceHooks

5 LLVM IR CodegenParams CodegenHooks

Machine code - -

Table 2.2: Additional interfaces to the Julia compiler for controlling code
generation processes.

For efficient and maintainable external language implementations,
access to the code generated at each stage of compilation does not suffice.
In addition, the metaprogramming interfaces should be augmented with
access to the processes that generate that code. For example, when com-
piling code for an environment that does not support the Julia runtime
library, the compiler should not generate code that calls the runtime. A
typical case is that of exceptions, which rely on the runtime for stack
unwinding and error reporting. Calls to the runtime are generated as
part of the code generation process that lowers Julia IR toLLVM IR.
To generate code that does not require the runtime library without ac-
cess to the code generation process, one needs to rid the Julia IR from
exceptions, or remove calls to the runtime from the generated LLVM IR.
Both approaches are fragile, because they involve modeling behavior and
duplicating parts of the main compiler.

2.4.1 Parameters and Hooks
To overcome this problem and improve the reusability of the compiler,
we added the four interfaces from Table 2.2 that offer additional control
over code generation processes. More specifically, both the lowering of
.....ASTs to JuliaIR, and Julia IR toLLVM IR can now be altered through
parameters and hooks to reconfigure or replace individual components of
these code generation processes. Applied to the above example of code
generation without a runtime library, a so-called CodegenParam could be
used to disallow exceptions altogether, or alternatively a CodegenHook
could change the generated code not to rely on the runtime library.
TheGPU back end from Chapter 3 uses these interfaces to replace or
customize code generation for exceptions, dynamic memory allocation
such as garbage collection, and other functionality that typically requires
runtime support libraries, Of course, the nature of these parameters and
hooks are specific to the language and its compiler, but the approach is
generic and enables extensive reuse of existing functionality.

2.4. LANGUAGE INTERFACES 19

For now, we have only introduced such interfaces to the processes
that generate Julia and LLVM IR; The parsing phase that converts
source-code to an AST is superficial and generic enough not to need ad-
justment for GPU execution, while machine code generation is extremely
target-specific and does not offer many opportunities for reuse.

2.4.2 Future Extensions

TheGPU back end from Chapter 3 demonstrates how the combination
of Julia’s multi-stage metaprogramming interfaces with our additions
from Table 2.2 is sufficiently powerful to add support for a nontrivial
hardware target with enough idiosyncrasies to require various changes
to the generated code and how it is processed. At the same time, we are
exploring additional interfaces and approaches that might offer better
usability in certain scenarios.

For example, CodegenHooks are executed during compilation, and
their implementation should act accordingly: They do not have direct
access to run-time values, but instead have to generate code that works
with run-time values. An alternative mechanism is provided by Cas-
sette.jl, not only making it possible to hook (or overdub) arbitrary code
patterns without the need for dedicated CodegenHooks, but also to imple-
ment the replacement function with ordinary code that is executed at
run-time and as a result has direct access to run-time values [124]. This
greatly improves usability, but the approach is not yet mature enough to
replace the use of CodegenHooks in the back end from Chapter 3. Specif-
ically, Julia’s type inference cannot always generate efficient code for
overdubbed functions, resulting in GPU-incompatible calls to the Julia
runtime library.

Another challenge is that there might not be a singular point to hook
the compiler. For example, we explained above how exceptions in Julia
are implemented with calls to the Julia runtime library, and how we can
hook the compiler to lower exceptions differently. However, there are
multiple points in the compiler where these calls are emitted, and there
is no guarantee that the CodegenHook covers all of them. Furthermore,
it is also possible for Julia source code to call the runtime directly. To
improve this, we are investigating how to represent these and other op-
erations in the relevant compilerIRs. This would make it possible for
a compiler post-processing pass to systematically lower these operations
differently.

20 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

2.5 Code Generation

The codegen step in the main compiler translates (i.e., lowers) JuliaIR
intoLLVM IR. The C++ part of that code generator directly invokes
LLVM IR builder interfaces to do so; the pre-existing part implemented
in Julia itself uses the aforementioned string-based interfaces.

For the device package in support of an accelerator, we want to avoid
both mechanisms as much as possible. The string-based approach is too
fragile; using C++ is not productive for the package developer (likely
an expert in Julia and the targeted accelerators, but not necessarily in
C++). We hence strive to provide the necessary interfaces and func-
tionality to let developers create new language implementations for ac-
celerators in the Julia language itself, and shielding them from as many
LLVM details as possible. This greatly lowers the required effort to sup-
port new hardware, as much less code is required when the necessary
accelerator-oriented compiler functionality can be written in a produc-
tive programming language. As a testament thereto, theGPU support
presented in Chapter 3 only requires about 2500 LOC (Lines Of Code).

Furthermore, no changes to the language’s compiler are then re-
quired, which enables the distribution of the new language implementa-
tions (i.e., the device packages) independently of the existing implemen-
tation, e.g., with a built-in package manager. The new implementation
can be quickly iterated and improved upon, while keeping the core lan-
guage and its compiler stable. Such a development model is especially
interesting for accelerator vendors, where the rapid pace of hardware
developments necessitates frequent changes to the toolchain. This con-
trasts with the relatively slow developments in host compilers and with
conservative upgrade policies by system administrators.

To accomplish this, we (1) extend the LLVM IR metaprogramming
interface to accept arbitrary IR, and (2) provide a high-level wrapper to
the LLVM libraries to efficiently generate that IR from within Julia.

2.5.1 Extended LLVM IR Metaprogramming

The existing llvmcall interface uses stringly-typed arguments: Code is
passed using literal strings ofLLVMIR, a restrictive but often convenient
and concise way to insert simple operations such as calls to compiler in-
trinsics, or to use specific hardware instructions. To make it possible to
call arbitrary functions, we extended the interface to accept both an IR
snippet and the global declarations that LLVM sometimes requires. List-
ing 4 shows how this improves the capabilities of the interface, without
sacrificing the ease-of-use or conciseness.

2.5. CODE GENERATION 21

1 function floor(x::Float64)
2 llvmcall(
3 ("""declare double @llvm.floor.f64(double)""",
4 """%2 = call double @llvm.floor.f64(double %0)
5 ret double %2"""),
6 Float64, Tuple{Float64}, x)
7 end

Listing 4: Calling a compiler intrinsic with LLVM IR metaprogramming
and stringly-typed IR.

When dealing with more complicated functionality, the IR cannot be
easily encoded as a string. One alternative, as developed for the Julia
C++ FFI (Foreign Function Interface) [57], is to provide a pointer to the
underlying LLVM function object. The Julia compiler will then link that
function into the current LLVM module and insert a regular function
call, effectively adding the function’s IR to the current program.

In the case of the Julia C++ FFI, the LLVM function object is
constructed by the Clang library. This library is written in C++, and
has full access to the LLVM IRBuilderAPIs. The following section will
describe how we accomplish this from within Julia, without access to
the LLVM C++ APIs.

2.5.2 LLVM Wrapper

To facilitate interactions withLLVM, we have created the LLVM.jl pack-
age.3 It provides a high-level Julia wrapper to the LLVM CAPI, using
Julia’s built-in CFFI to interact efficiently with the underlying libraries.
Although the C API is limited in comparison with the C++ API, it has
turned out to be extensive enough to implement theGPU back end
from Chapter 3 which includes several analyses and transformations at
the LLVMIR level. Where the C API falls short, we add additional API
entry points to the Julia runtime library.

The LLVM.jl package can be used to inspect, modify or emit IR
code. It greatly improves the usability of the extension interfaces that
operate at the IR level. In addition, the package enables reuse of back-
end compiler functionality that is part of LLVM, including the vast array
of optimization passes that are part of LLVM, or the many back ends
to generate machine code from LLVM IR.

3Available at https://github.com/maleadt/LLVM.jl

https://github.com/maleadt/LLVM.jl

22 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

1 @generated function floor(x::Float64)
2 eltyp = convert(LLVMType, Float64)
3
4 # create an LLVM module and function
5 mod = LLVM.Module("llvmcall")
6 ft = LLVM.FunctionType(eltyp, [eltyp,])
7 f = LLVM.Function(mod, "floor", ft)
8
9 # get the intrinsic (here, with the same type as the calling function)

10 intr = LLVM.Function(mod, "llvm.floor.f64", ft)
11
12 # generate IR
13 LLVM.Builder() do builder
14 bb = LLVM.BasicBlock(f, "entry")
15 LLVM.position!(builder, bb)
16
17 input = LLVM.parameters(f)[1]
18 output = call!(builder, intr, [input])
19
20 ret!(builder, output)
21 end
22
23 # inject the IR and call it
24 fp = convert(Ptr{Cvoid}, LLVM.ref(f))
25 return :(llvmcall($fp, Float64, Tuple{Float64}, x))
26 end

Listing 5: Calling a compiler intrinsic with LLVM IR metaprogramming
and LLVM.jl.

Simple Operations

Listing 5 reimplements Listing 4 with functionality from LLVM.jl. It
demonstrates of use the LLVM APIs as wrapped by LLVM.jl. Higher-
level interfaces that facilitate interoperability with the Julia compiler
are provided by LLVM.jl as well. The example is implemented using a
generator function, declared with @generated, which builds the expres-
sions that should be executed at run time. The generator is expanded
at compile time, during type inference: It generates LLVM IR and re-
turns an llvmcall expression with an LLVM function object argument,
instead of encoding the IR as a literal string.

The example demonstrates how a relatively simple operation, calling
the llvm.floor.f64 compiler intrinsic, is now a convoluted process that
involves a lot of boilerplate: converting Julia types to their LLVM coun-
terparts, creating an LLVM module, resolving the intrinsic function, etc.
For these kinds of tasks, the string-based interface is still useful.

2.5. CODE GENERATION 23

1 const llvmtypes = IdDict{Any,String}(
2 Int64 => "i64",
3 # ...
4)
5
6 @generated function unsafe_load(p::Ptr{T}) where {T}
7 eltyp = llvmtypes[T]
8
9 if v"..." <= Base.libllvm_version <= v"..."

10 return quote
11 llvmcall(
12 $"""%2 = inttoptr i64 %0 to $eltyp*
13 %3 = load $eltyp, $eltyp* %2, align 8
14 ret $eltyp %3""",
15 T, Tuple{Ptr{T}}, p)
16 end
17 else
18 error("Unsupported LLVM version")
19 end
20 end

Listing 6: Loading values from a pointer with LLVM IR metaprogram-
ming and stringly-typed IR. The semantics of unsafe_load have been
simplified for brevity.

Complex Operations

More complicated operations, e.g., where the IR depends on the type of
the arguments, quickly run into the restrictions of stringly-typed IR. As
an example, we consider the implementation of a custom function to load
values from a pointer. In Julia, accessing, e.g., an element in an array
is implemented by a call to the unsafe_load function from the standard
Julia library. Its body contains a call to an intrinsic function that is
recognized by the code generator in the main Julia compiler, which then
lowers it to appropriate LLVM IR code. Implementing an optimized
version of unsafe_load for loading values on accelerators using the same
intrinsics mechanism would similarly require the introduction of one or
more intrinsics in the main compiler, and writing the necessary lowering
support in C++ using LLVM APIs. This is cumbersome, inflexible, and
unproductive.

Again, with LLVM IR metaprogramming we can provide an opti-
mized implementation of unsafe_load within Julia and without having
to modify the compiler. Listing 6 shows a simplified implementation us-
ing the llvmcall interface and IR encoded as a string. Here, the use
of a generator function illustrates an additional option: Since the gen-

24 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

erator is expanded during type inference, the generated expressions can
be specialized on the types of the arguments. This is strictly more pow-
erful than using symbolic macros: the pointer argument p is not only
known by name, but its type Ptr{T} as determined by type inference
in the Julia compiler is also known to the generator function, with T
being a type variable referring to the actual run-time element type of
the pointer. The generated code hence depends on the inferred types,
and can be customized and optimized for them at each invocation of
unsafe_load.

However, the example runs into the limitations of a string-based
metaprogramming interface: We have to hard-code the supported types,
the body of the generated function is full of string manipulations, the lit-
eral IR snippet is dependent on the LLVM version, etc. This makes the
implementation hard to understand and maintain. Moreover, it only sup-
ports certain pointer types, and more complicated functionality where
the actual IR instructions depend on the argument types instead of only
the types of the instructions operands, would be hard or impossible.

The code in Listing 7 implements the same unsafe_load function
but uses LLVM.jl to build the IR. This does not suffer from the issues
mentioned above. The code is generic for all pointer types, is portable
across LLVM versions, and does not rely on string manipulations to
generate IR.

Furthermore, it is much simpler to generate specialized IR that de-
pends on the types of the arguments. This is useful beyond specialization
on plain argument types. We can use the mechanism to encode arbitrary
information in the type system for use during code generation. For ex-
ample, the GPU back end from Chapter 3 encodes compile-time address
space information in the type of its device pointers and uses that to
generate memory accesses optimized for the different types of memories
in a GPU memory hierarchy, as will be explained in Section 3.3.2.

High-Level Compiler Development

Developing a compiler in Julia benefits from the productivity improve-
ments that come with a high-level language. In addition, the LLVM.jl
package provides high-level wrappers that facilitate use of the LLVM
C APIs. Common operations are mapped onto idiomatic constructs,
such as iterators for looping over properties of objects, closures for con-
structing IR passes, etc.

2.5. CODE GENERATION 25

1 @generated function unsafe_load(p::Ptr{T}) where {T}
2 eltyp = convert(LLVMType, T)
3
4 # create a LLVM module and function
5 mod = LLVM.Module("llvmcall")
6 param_typs = [LLVM.PointerType(eltyp)]
7 ft = LLVM.FunctionType(eltyp, param_typs)
8 f = LLVM.Function(mod, "unsafe_load", ft)
9

10 # generate IR
11 LLVM.Builder() do builder
12 bb = LLVM.BasicBlock(f, "entry")
13 LLVM.position!(builder, bb)
14
15 ptr = LLVM.parameters(f)[1]
16 val = LLVM.load!(builder, ptr) # the actual load
17
18 LLVM.ret!(builder, val)
19 end
20
21 # inject the IR and call it
22 fp = convert(Ptr{Cvoid}, LLVM.ref(f))
23 return :(llvmcall($fp, $T, Tuple{Ptr{$T}}, p))
24 end

Listing 7: Loading values from a pointer with LLVM IR metaprogram-
ming and LLVM.jl. The semantics of unsafe_load have been simplified
for brevity.

26 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

Listings 8 and 9 compare the code to generate and execute IR that
computes the sum of two 32-bit integers, respectively in C++ using the
official LLVM C++ API, and in Julia with LLVM.jl. For brevity, the
C++ version leaves out the various headers that need to be included.
Even for such a short example, the Julia version shows a 33% reduction
inLOC, while using much more readable programming patterns. At the
same time, the high-level operations map onto identical API calls, i.e.,
there is no cost to the use of these abstractions.

The package also reconstructs the type hierarchy that exists within
LLVM but is not exposed by the C API due to limitations of the C
programming language. For example, creating a constant integer value
in LLVM using the C++ API yields a value of type llvm::ConstantInt.
This type is a subclass of llvm::Value, but the C API returns an opaque
llvm::Value pointer without that concrete type information. As a re-
sult, the C API needs to provide specialized API functions that dif-
ferentiate between the different llvm::Value subclasses. For example,
LLVMConstAdd and LLVMBuildAdd serve to add respectively two constants
or two run-time values. Both functions take arguments that are generic
pointers to llvm::Value, but are not actually compatible with all such
values: Invoking a function with an unsupported value, e.g., calling
LLVMConstAdd with a pointer to llvm::Instruction, which is a subtype
of llvm::Value, results in a run-time assertion failure. LLVM.jl recon-
structs the original C++ type hierarchy and provides a single add! func-
tion that correctly dispatches based on the type of the arguments. Using
wrongly-typed arguments will then result in a graceful method error.

2.5. CODE GENERATION 27

1 llvm::LLVMContext context;
2
3 std::unique_ptr<llvm::Module> mod =
4 llvm::make_unique<llvm::Module>("module", context);
5
6 auto T_int32 = llvm::IntegerType::get(context, 32);
7 auto fun_type = llvm::FunctionType::get(T_int32, {T_int32,T_int32},
8 false);
9 auto sum = llvm::Function::Create(fun_type,

10 llvm::Function::ExternalLinkage,
11 "sum", mod.get());
12
13 // generate IR
14 llvm::IRBuilder<> builder(context);
15 {
16 auto *entry = llvm::BasicBlock::Create(context, "entry", sum);
17 builder.SetInsertPoint(entry);
18
19 auto args = sum->arg_begin();
20 llvm::Value *arg1 = &(*args);
21 args = std::next(args);
22 llvm::Value *arg2 = &(*args);
23 auto *tmp = builder.CreateAdd(arg1, arg2, "tmp");
24 builder.CreateRet(tmp);
25
26 mod->dump();
27 verifyFunction(*sum);
28 }
29
30 // execute
31 auto engine = llvm::EngineBuilder(std::move(mod))
32 .setEngineKind(llvm::EngineKind::Interpreter)
33 .create();
34 {
35 std::vector<llvm::GenericValue> args(2);
36 args[0].IntVal = llvm::APInt(32, 1, /*isSigned=*/true);
37 args[1].IntVal = llvm::APInt(32, 2, /*isSigned=*/true);
38
39 auto res = engine->runFunction(sum, args);
40 res.IntVal.dump();
41 }

Listing 8: Generate and execute code to compute the sum of two 32-bit
integers using the LLVM C++ API.

28 CHAPTER 2. DYNAMIC COMPILER BACK ENDS

1 mod = LLVM.Module("module")
2
3 T_int32 = LLVM.Int32Type()
4 fun_type = LLVM.FunctionType(T_int32, [T_int32, T_int32])
5 sum = LLVM.Function(mod, "sum", fun_type)
6
7 # generate IR
8 Builder() do builder
9 entry = BasicBlock(sum, "entry")

10 position!(builder, entry)
11
12 tmp = add!(builder, parameters(sum)..., "tmp")
13 ret!(builder, tmp)
14
15 println(mod)
16 verify(mod)
17 end
18
19 # execute
20 Interpreter(mod) do engine
21 args = [GenericValue(T_int32, 1),
22 GenericValue(T_int32, 2)]
23
24 res = LLVM.run(engine, sum, args)
25 println(convert(Int, res))
26 end

Listing 9: Generate and execute code to compute the sum of two 32-bit
integers using LLVM.jl in Julia.

Chapter 3
CUDA Language
Implementation

In this chapter, we describe how we used the compiler interfaces
from Chapter 2 to extend the existing Julia implementation to generate
code for accelerator hardware. We choose to targetGPUs, massively
parallel accelerators with a distinctive enough architecture to make opti-
mization worthwhile, yet broadly usable for many kinds of applications.
Specifically, we focus on NVIDIA GPUs withCUDA, because of the
mature toolchain and hardware availability.

We implemented these programming capabilities as part of a regular
Julia package that can be installed on any system. The package makes it
possible to program GPUs at the same low abstraction level of CUDA C.
This is a deliberate choice, as high-level abstractions typically come at a
cost, either in terms of performance or by complicating the development
of low-level programs. In Chapter 4, we will describe a higher-level
programming model that builds on this infrastructure.

The main scientific contribution of this chapter is an imple-
mentation of the Julia programming language for GPUs, mak-
ing it possible to program GPUs in a high-level language with
the same performance as low-level C code. By integrating with
the existing Julia implementation, GPU code can use many of
the language’s features and more easily reuse existing code. In
this chapter, I also describe the compilation techniques that
I developed in order to support high-level language semantics
on the GPU. These contributions have been published in a
peer-reviewed journal.1

1Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective Extensible Pro-
gramming: Unleashing Julia on GPUs”. In: Transactions on Parallel and Distributed
Systems (TPDS) (2018). issn: 1045-9219. doi: 10.1109/TPDS.2018.2872064. arXiv:
1712.03112 [cs.PL].

https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112

30 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

3.1 Background and Related Work:
Graphics Processing Units

.GPUs are massively parallel accelerators that can speed up compute-
intensive general-purpose applications. However, that generality is con-
strained: Most GPUs need to be treated like a coprocessor (with separate
memory spaces, controlled by a host processor, mostly unable to perform
I/O (Input/Output) operations, etc.), and can only efficiently execute
codes that exhibit specific kinds of parallelism. As a result, GPUs are rel-
atively hard to program: Programmers have to deal with the intricacies
of coprocessor programming, and need experience with parallel program-
ming to assess if and how specific problems can be solved effectively on
a GPU.

At the same time, vendor-supported development environments for
programming GPU accelerators typically work with low-level program-
ming languages. NVIDIA’sCUDA, for instance, uses CUDA C, while
AMD and Intel GPUs are programmed usingOpenCL C. The constructs
in these low-level languages map closely to available hardware features,
making it possible to reach peak performance, as potentially costly ab-
stractions are avoided. However, the lack of such abstractions also com-
plicates GPU programming, not only requiring parallel programming
skills and domain knowledge to map the problems, but also low-level pro-
gramming competence and GPU hardware know-how for the actual im-
plementations [95]. Furthermore, due to a lack of abstractions, these im-
plementations are often hardware-specific, or perform significantly worse
on different hardware [53]. Libraries like CUB (CUDA Unbound) [104]
or Thrust [70] aim to raise the abstraction level and portability using
C++ templates, but fall short due to the low-level nature of C++ and
limited applicability across vendor toolkits.

Rather than programming accelerators directly, developers can also
use optimized host libraries that are called from the host processor and
not directly from the device. Hardware vendors provide such libraries,
implementing popular interfaces like BLAS (Basic Linear Algebra Sub-
routines) [52] and LAPACK (Linear Algebra Package) [4]. There also
exist third-party libraries like ArrayFire [101] and ViennaCL [132] that
abstract over devices and platforms. These libraries typically export a
CAPI, which eases their use outside of the vendor-supplied development
environment. For example, the CUDA BLAS library cuBLAS [113] can
be used from Python [47], Julia [79], Octave [102], etc. However, com-
pilers for these languages cannot reason about code in the libraries, and
they cannot optimize code across calls to it. Moreover, library-driven

3.2. STRUCTURE 31

development requires programming in terms of abstractions, which are
typically coarse-grained to amortize the cost of configuring the accelera-
tor, initiating execution, etc. Most libraries are also unable to compose
their abstractions with custom device code. As a result, library-based
programming can be unfit for implementing certain types of applications.

Using high-level languages to program accelerators directly provides
a middle ground between high-level host libraries and direct program-
ming with vendor toolkits: Direct programming can offer fine-grained
control over compilation and execution, while the use of a high-level
language and its abstraction capabilities can improve programmer pro-
ductivity. However, existing implementations of high-level languages for
accelerators do not integrate well with the rest of the ecosystem. Some
come in the form of an embedded DSL (Domain Specific Language), such
as PyGPU [93] or Copperhead [37], which programmers have to learn
and to which they have to adapt their code. Others work with a dedi-
cated data parallel language, like Lift [140], Futhark [68] and Quasar [63],
that are well-suited for programming accelerators but cannot be used to
implement the rest of the application. Some general-purpose high-level
languages can be compiled for accelerators by relying on partial evalua-
tion, such as R with FastR [61] or by using the AnyDSL programming
system [92], but that evaluation is not always certain and often forces
the user to program at a higher abstraction level. Continuum Analytics’
Numba [87] does directly compile the general-purpose Python language,
but only supports a subset that is appropriately called nopython because
it does not support many of Python’s high-level features that do not
map well onto GPUs, while duplicating compiler functionality from the
CPython reference implementation as shown in Figure 2.2. The inter-
faces from Chapter 2 aim to avoid this duplication, and integrate with
the existing language implementation for the purpose of improved code
compatibility and an effective compiler implementation.

3.2 Structure

The implementation of Julia forCUDAGPUs is an instantiation of
the abstract device package in Figure 2.1. Shown in Figure 3.1, it is
distributed as a regular Julia package named CUDAnative.jl2 and does
not require any modifications to the underlying Julia compiler. Instead,
it reconfigures the existing compiler to generate GPU compatible code.

2Available at https://github.com/JuliaGPU/CUDAnative.jl

https://github.com/JuliaGPU/CUDAnative.jl

32 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

Host
Julia code

Device
Julia code

extensive
code reuse

LLVM PTX
back-end

GPU stdlib

CUDAnative.jl

GPU runtime

Front-end
extensions

Julia
middle-end
extensions

GPU compiler

LLVM
middle-end
extensions

LLVM CPU
back-end

LLVM.jl

Parser

2

1

3

4

5

AST

Low-level
optims

High-level
optims

Lowering

Codegen

Julia IR

LLVM IR

Julia compiler

Figure 3.1: Overview of the compilation process for Julia code with
CUDAnative.jl by means of the compiler extension interfaces from Chap-
ter 2. Dashed arrows indicate generic interactions; solid arrows represent
the flow of code.

3.3. STANDARD LIBRARY 33

The package consists of three major components: a standard library
with GPU-specific functionality, a compiler to generate GPU machine
code from Julia sources, and a run-time system to invoke the compiler
and manage it together with the underlying GPU hardware. Together
with the main compiler, which serves as aJIT compiler for hostCPUs,
this package serves as a JIT compiler for CUDA GPUs.

CUDAnative.jl is designed to enable GPU kernel programming in
high-level Julia at the low-level CUDA abstraction level. This is a de-
liberate design decision, as eagerly raising the abstraction level typically
comes at a cost, either in terms of performance or by complicating the
development of low-level GPU programs. Nonetheless, we do benefit
from the use of a high-level language, and support many of its features
in the context of GPU kernel programming in order to improve program-
mer productivity. Examples include the use of rich array objects with
multidimensional indexing instead of raw pointers and fragile pointer
arithmetic, support for exceptions that point to the exact source code
location in kernel code, the use of those exceptions to trap common
bugs like out-of-bounds array accesses or invalid conversions between
numbers, and so on. We also rely on Julia’s powerful metaprogramming
capabilities to design high-level library interfaces, such as an @atomic
macro to prefix expressions with and make them behave atomically.

The following sections will detail the individual components of CUDA-
native.jl, and how they enable or support the compilation of high-level
source code to high-performance GPU machine code.

3.3 Standard Library

The CUDAnative.jl standard library focuses on providing definitions for
low-levelGPU operations that are required for writing effective GPU
applications. For example, to access registers containing current thread
and block indexes, define synchronization barriers, or allocate shared
memory. It also includes certain functions that are specific to the Julia
language, and are expected by the Julia compiler to be available. Ex-
amples include functions to allocate and free memory, “box” a value
(allocate it on the heap and attach a type tag), etc.

AsCUDA provides a large amount of these low-level GPU operations,
some of which only rarely used by GPU programmers, only a subset is
implemented by the CUDAnative.jl standard library. Table 3.1 shows
the available functionality as of May 2019, which includes many of the
commonly-used CUDA extensions to the C language, certain function-
ality from the hostAPI that is also available on the device (provided

34 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

Category Available functionality
Indexing threadIdx, blockDim, blockIdx, gridDim,

warpSize

Memory static and dynamic shared memory,
dynamic allocations, fences, ldg

Synchronization thread synchronization (plain, count, and, or),
warp synchronization

Atomics all atomic operations (xch, add, sub, inc, dec,
and, or, xor, min, max)

Cooperative groups cooperative kernels, group synchronization
Dynamic parallelism dynamic kernels, device synchronization
Warp intrinsics voting (any, all, ballot), shuffle
Time clock, nanosleep
I/O printf, assert

Table 3.1: Overview of CUDA functionality provided by the CUDA-
native.jl standard library for kernel programming.

by libcudadevrt), and common math primitives and bit-manipulation
functions as found in the CUDA device library, libdevice. Additional
functionality is developed when the need arises, and can be done so
quickly as will be detailed in the next section.

3.3.1 Implementation

Whereas many languages would implement low-level definitions using
compiler intrinsics – built-in functions handled specially by the com-
piler – the Julia language is expressive enough to implement much of
this functionality using Julia code itself. Built-in functions might still
be necessary to implement very low-level interactions, but the amount
of these functions and their responsibilities are greatly reduced. For ex-
ample, where CPython implements the print function entirely in C as
part of the compiler, Julia only relies on a write function to write bytes
to standard output.

Even when the language is not expressive enough, intrinsics can be
avoided by generating lower-level code directly using the metaprogram-
ming interfaces from Table 2.1. For example, atomics are implemented
with literal snippets ofLLVMIR and wrapped in user-friendly language
constructs by means of macros. TheGPU standard library in CUDA-

3.3. STANDARD LIBRARY 35

native.jl relies heavily on this type of programming, with help from the
LLVMAPI wrapper from Section 2.5 to facilitate interactions with the
LLVM IR.

Julia’s expressiveness and metaprogramming capabilities allow for
most of its standard library to be written in Julia itself. This makes
the standard library much easier to extend or override, e.g., using type-
based multiple dispatch as demonstrated in Listing 2. CUDAnative.jl
relies on this extensibility to improve GPU compatibility or performance
of existing language features, as the next section illustrates.

3.3.2 Pointers with Address Spaces

Pointer address spaces identify, in an abstract way, where pointed-to
objects reside. They serve optimization purposes such as identifying
pointers to garbage-collected memory, or have a physical meaning de-
pending on the hardware being targeted. In the case of PTX (Paral-
lel Thread Execution) code emitted for NVIDIAGPUs, address spaces
differentiate between state spaces: storage areas with particular char-
acteristics in terms of size, access speed, sharing between threads, etc.
The PTX compiler uses this information to emit specialized memory
operations, such as ld.global or st.shared. If no address space is spec-
ified, untagged operations are emitted (ld or st) which make the GPU
determine the state space at run time by checking against a memory win-
dow. While implementing initialCUDA support for Julia, we observed
that these untagged operations significantly lower the performance of
memory-intensive benchmarks.

.....LLVM’s existing optimizations to infer address spaces across memory
operations fall short when memory allocation sites are invisible [155].
Pointers passed to a kernel as arguments, which often happens when
entry-point kernels take (pointers to) arrays as arguments, have their
allocation in host code, which is invisible to the GPU compiler.

In Julia, pointers are represented by instances of the Ptr type. They
are regular objects with no special meaning, and operations on these
pointers are implemented using normal methods. As such, we can easily
define our own pointer type. Listing 10 shows how CUDAnative.jl pro-
vides a custom DevPtr type representing a pointer with address-space
information. By implementing the excepted method interface, which
includes the unsafe_load method defined on line 8, DevPtr objects can
be used in place of Ptr objects. This then yields specialized memory
operations that perform better.

36 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 # custom pointer with address-space information
2 struct DevPtr{T,AS}
3 ptr::Ptr{T}
4 end
5
6 # loading an indexed value from a pointer
7 @generated function unsafe_load(p::DevPtr{T,AS},
8 i::Int=1) where {T,AS}
9 eltyp = convert(LLVMType, T)

10
11 # create a LLVM module and function
12 ...
13
14 # generate IR
15 LLVM.Builder() do builder
16 ...
17
18 # load from ptr with AS
19 ptr = LLVM.gep!(builder, LLVM.parameters(f)[1],
20 [parameters(f)[2]])
21 devptr_typ = LLVM.PointerType(eltyp, AS)
22 devptr = LLVM.addrspacecast!(builder,ptr,devptr_typ)
23 val = LLVM.load!(builder, devptr)
24
25 ...
26 end
27
28 # inject the IR and call it
29 ...
30 end

Listing 10: Optimized GPU pointers in CUDAnative.jl, building on List-
ing 7.

3.4. COMPILER BACK END 37

The implementation of unsafe_load in Listing 10 uses the metapro-
gramming techniques explained in Section 2.5. A generator function
builds specialized LLVMIR and injects it back in the compiler, with the
relevant address-space-specific load on line 22. This allows to implement
low-level functionality that cannot be expressed using pure Julia code,
without the need for additional compiler intrinsics.

Note how the DevPtr type from line 2 only contains a single ptr field
and as such has the exact same memory layout as the existing Ptr type.
The address space information is only known by the type system, and
does not affect the memory representation of run-time pointers.

3.3.3 NVIDIA Device Library

Another important source of low-levelGPU operations is libdevice, a
bitcode library shipped as part of theCUDA toolkit. This library con-
tains common functionality implemented for NVIDIA GPUs, including
math primitives, certain special functions, bit manipulation operations,
etc. The CUDAnative.jl package provides wrappers for these operations,
compatible with counterpart functionality in the Julia standard library.
This often raises the abstraction level, and improves usability. For ex-
ample, libdevice provides 4 different functions to compute the absolute
value: __nv_abs and __nv_llabs for respectively 32-bit and 64-bit in-
tegers, and similarly __nv_fabs and __nv_fabsf for 32-bit and 64-bit
floating-point values. The Julia wrapper provides the same functional-
ity, but as different methods of a single generic function abs.

3.4 Compiler Back End

Together with the main Julia compiler, the CUDAnative.jl infrastructure
of Figure 3.1 instantiates the design from Figure 2.1, with the unaltered
Julia andLLVMIRs as the high and low-level IRs. Together with host
Julia code, device code is processed by the main compiler’s parser, which
lowers syntactical constructs and expands macros. Both host and device
code can include application code as well as library code, and there is no
inherent difference between either type of code. There is no need for an
explicit annotation or encapsulation of device code, greatly improving
opportunities for code reuse. For example, barring use of incompatible
language features, much of the Julia standard library can be used to
implement device code.

38 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

3.4.1 Compilation Process

The main interface for calling functions on aGPU resembles a call to
an ordinary Julia function: @cuda kwargs... function(args...), where
kwargs represents an optional set of keyword arguments that influence
the execution: threads=... and blocks=... to configure the grid, shmem
and stream to respectively set the amount of dynamic shared memory
and the stream on which the kernel will be executed, and keywords
like minthreads, maxthreads and maxregs to influence code generation by
.....LLVM and the underlyingPTXJIT.

Because of the way @cuda is implemented in the GPU standard li-
brary using metaprogramming, the Julia compiler invokes the GPU com-
piler in CUDAnative.jl whenever such a call occurs in the code. That
GPU compiler then takes over the compilation of the called code. Using
the existing interfaces from Table 2.1, the new interfaces from Table 2.2,
and the LLVM.jl wrapper, the GPU compiler configures and invokes the
existing main compiler components for lowering the (expanded)AST
into GPU-oriented JuliaIR, for performing high-level optimizations on
it, for generating GPU-oriented LLVM IR, and for performing low-level
optimizations on that IR. Through the new interfaces, the execution of
these compilation steps is repurposed with new GPU-specific function-
ality that is implemented in CUDAnative.jl. For the front end, most
of the GPU-specific functionality actually resides in the GPU standard
library as discussed in the previous section; the front-end extensions in
the GPU compiler are therefore minimal.

The resulting low-level, GPU-optimized LLVM IR is then compiled
to PTX by means of the LLVM NVPTX back end, which is again ac-
cessed with the LLVM.jl wrapper package from Section 2.5. This use of
an external GPU back end compiler rather than one embedded in the
device package diverges slightly from the design in Figure 2.1. For its
..... . . .CPU back end, the Julia compiler already relies on LLVM CPU back
ends. So any Julia distribution already includes LLVM. The fact that
LLVM can also generate excellent PTX code forCUDA devices when
it is fed well-formed and optimized LLVM IR code, voids the need for
including a third-party GPU compiler or a reimplementation thereof in
the device package [155]. Without putting any burden on system admin-
istrators or users to install additional packages or tools, we can simply
reuse the LLVM PTX back end.

Alternatively, we could have used the NVIDIA Compiler SDK (Soft-
ware Development Kit). This SDK is shipped as part of the CUDA
toolkit, and provides the NVVM (NVIDIA Virtual Machine) library to
compile LLVM IR to PTX assembly. For a variety of reasons however,

3.4. COMPILER BACK END 39

we cannot practically use this library. First and foremost, the latest iter-
ation of NVVM only supports IR from LLVM 5.0. Julia uses LLVM 6.0,
and there is no backwards compatibility. Worse, the LLVM IR version
and subset supported by NVVM changes frequently, e.g., NVVM 1.5
as shipped with CUDA 9.2+ supports IR from LLVM 5.0, NVVM 1.4
from CUDA 9.0 and 9.1 supports LLVM 3.8, etc. This makes it hard or
impossible to support multiple versions of the CUDA toolkit. Finally,
the closed-source nature of the library is a significant hurdle for compiler
research. Access to the source code that implements NVPTX has been
important during the development of CUDAnative.jl, both educationally
and to add support for IR patterns as generated by the Julia compiler.

3.4.2 Optimization Passes

Before generating machine code,LLVM optimization passes extensively
optimize the LLVMIR. These passes are both used to lower Julia spe-
cific high-level constructs, such as exception handlers and memory allo-
cations, as well as to optimize the IR for performance. Most of these
passes are implemented in C++, either as part of the LLVM framework
or within the Julia compiler. However, with LLVM.jl it is also possi-
ble to write IR passes in Julia, and CUDAnative.jl provides several such
passes. We will now describe the most interesting of these optimizations.

Entry-Point Calling Conventions

One optimization that drastically improves performance, is rewriting the
calling convention of entry-point functions. Semantically, Julia passes
objects of an immutable type by copying, while mutable types are passed
by reference. The actual calling convention as generated by the Julia
compiler also passes aggregate immutable types by reference. This does
not change semantics, but reduces stack memory usage. In the case of
.....GPU kernel invocations, this means that not the aggregate argument it-
self, but only a pointer to the argument will be stored in the designated
parameter state space (see Section 3.3.2). This space has special seman-
tics that map well onto typical function argument behavior — read-only
access instead of read-write, per-kernel sharing instead of per-thread —
and typically offers better performance than loading arguments from
other memories. However, by passing arguments by reference only the
pointer will be loaded from parameter space, and not the underlying
objects. In other words, the Julia array objects that themselves contain
pointers to the actual buffers to be manipulated by the GPU, are not
moved into designated GPU memories to optimize performance.

40 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 ; original device function, with a pointer-to-array as argument
2 define void @device_function({ [1 x i64], { i64 } }* %array_ptr) {
3 top:
4 %1 = getelementptr inbounds { [1 x i64], { i64 } },
5 { [1 x i64], { i64 } }* %array_ptr,
6 i64 0, i32 1, i32 0
7 %2 = bitcast i64* %1 to i64**
8 %data_ptr = load i64*, i64** %2
9 store i64 1, i64* %data_ptr

10 ret void
11 }
12
13 ; optimized kernel function, with the actual array object as argument
14 define void @kernel_function({ [1 x i64], { i64 } } %array) {
15 top:
16 %1 = extractvalue { [1 x i64], { i64 } } %array, 1, 0
17 %data_ptr = inttoptr i64 %1 to i64*
18 store i64 1, i64* %data_ptr
19 ret void
20 }

Listing 11: Simplified LLVM IR for a GPU function that takes a single
1-dimensional array argument and sets the first item to 1. In the case of
the kernel function, the calling convention is rewritten to make better
use of the parameter state space and avoid a global memory load.

To solve this problem, we let the GPU compiler enforce an adapted
calling convention for entry-point kernel functions: Immutable aggre-
gates are also passed by value, instead of by reference. This does not
change semantics, as objects of mutable types are still passed by refer-
ence. Regular, non-entrypoint functions are not changed, as their argu-
ments are not stored in the parameter state space. Finally, the CUDA-
native.jl run-time system passes all immutable arguments by value in-
stead of by reference. This yields a speedup of up to 20% on memory-
intensive Rodinia benchmarks.

We implement this change at the LLVM IR level by generating a
wrapper function that takes values as arguments instead of references,
stores said values in a stack slot, and passes references to those slots to
the original entry-point function. After forced inlining and optimization,
all redundant operations disappear. Listing 11 shows the effect of this
transformation in the case of passing a device array, represented as an
aggregate structure containing the array size and a data pointer, to a
function with a single parameter. Note that this IR is simplified and

3.4. COMPILER BACK END 41

does not show the result of other optimizations such as the explicit use
of pointers with address spaces as discussed in Section 3.3.2.

Alternatively, this change could have been implemented by altering
code generation for function calls, e.g., using a CodegenHook. However,
function calling conventions are not well abstracted in LLVM, and as a
result are entrenched in many of the Julia code generating routines. It is
not worthwhile to try to abstract this functionality only for the purpose
of rewriting entry-point functions.

Exception Control Flow

Another set of passes aims to improve compatibility of nontrivial control
flow caused by exceptions. Typical kernels, as written inCUDA C, have
simple control flow with few function exits. These exits tend to be warp
uniform, i.e., they are executed by all threads simultaneously.

Code as generated by Julia does not follow this pattern: exceptions
can be thrown by individual threads, resulting in warp divergent kernel
exits. As it turns out, thePTX assembler does not handle this type of
control flow very well, and exceptions have been a recurring source of
subtle bugs.3 The phenomenon is related to how GPUs implement con-
trol flow by execution masking, which requires the assembler to maintain
a branch synchronization stack and use it to re-converge threads after
a divergent branch [32]. LLVM provides a so-calledCFG structurizer
pass, which transforms control flow into a form that is suitable for ex-
ecution on hardware that uses execution masking, but it fails to deal
with divergent control flow that arises from trap instructions.

To prevent this issue, CUDAnative.jl provides a number of LLVM
passes that ensure Julia exceptions (and other sources of warp divergent
control flow) can be executed safely on the GPU:

1. lower exceptions to GPU-compatible IR
2. hide unreachable control flow
3. hide trap

The first pass lowers Julia exceptions that call into theCPU runtime
library with a GPU-compatible alternative that generates certain output
and halts execution. Listing 12 shows how the verbosity of the output
changes with the Julia debug level: at the lowest level, intended for
performance-critical or bug-free code, execution is halted without any

3https://github.com/JuliaGPU/CUDAnative.jl/issues/4 details such an issue,
where the interplay between warp divergent control flow and shared memory results
in silent corruption of stack memory.

https://github.com/JuliaGPU/CUDAnative.jl/issues/4

42 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 $ julia -g0 oob.jl
2 ERROR: CUDA error: an illegal instruction was encountered
3
4 $ julia -g1 oob.jl
5 ERROR: an exception occurred during kernel execution.
6 Run Julia on debug level 2 for device stack traces.
7 ERROR: CUDA error: an illegal instruction was encountered
8
9 $ julia -g2 oob.jl

10 ERROR: an exception occurred during kernel execution.
11 Stacktrace:
12 [1] checkbounds at abstractarray.jl:449
13 [2] setindex! at CUDAnative/HLG9m/src/device/array.jl:79
14 [3] kernel at oob.jl:6
15 ERROR: CUDA error: an illegal instruction was encountered

Listing 12: GPU exception behavior at different debug levels.

output except for an ILLEGAL_INSTRUCTION error message. At the default
optimization level, a call to the GPU print function is inserted, rendering
a default error message to standard output. This message is identical for
all exceptions, resulting in minimal overhead of a single module-scope
constant string and a single function call in the uncommon case where
an exception occurs. At higher debug levels we also encode the source-
code location, and use that to print a rich exception trace. This bloats
the module and code size, but is useful for debugging.

The generated IR for GPU exceptions, as well as other IR produced
by the Julia compiler, ends in a call to trap. This compiler intrinsic
serves to interrupt execution, and is lowered to target-specific code that
generates a fault. At the same time, it informs the LLVM optimizer that
certain regions of the function, i.e., code that follows the trap instruction,
are unreachable. It is modeled by means of the unreachable compiler
intrinsic, and is inferred from the presence of a call to trap.

During optimization, LLVM rewrites this so-called unreachable con-
trol flow as it expects execution of these unreachable regions to be highly
unlikely. Basic blocks that contain the unreachable intrinsic are merged
and moved to the end of the function. If some of the unreachable blocks
were warp divergent, this optimization introduces warp divergent control
flow that the PTX assembler does not handle well. This is a common
scenario, e.g., with exceptions that stem from array accesses within di-
vergent regions of the function.

To make sure the generated code is compatible with the PTX assem-
bler, the second pass rewrites the function to avoid unreachable code.

3.4. COMPILER BACK END 43

1 define void @original(i1) {
2 entry:
3 br i1 %0, label %exit, label %conditional
4
5 conditional:
6 call void @llvm.trap()
7 unreachable
8
9 exit:

10 ret void
11 }
12
13 define void @rewritten(i1) {
14 entry:
15 br i1 %0, label %exit, label %conditional
16
17 conditional:
18 call void @llvm.trap()
19 br label %exit
20
21 exit:
22 ret void
23 }

Listing 13: LLVM IR with unreachable control flow, and the rewritten
alternative that branches to a closely related basic block.

44 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 define void @rewritten(i1) {
2 entry:
3 br i1 %0, label %exit, label %conditional
4
5 conditional:
6 call void asm sideeffect "trap;", ""()
7 br label %exit
8
9 exit:

10 ret void
11 }

Listing 14: LLVM IR with a call to trap using inline assembly.

This prevents LLVM from introducing warp divergent control flow. List-
ing 13 shows how we insert a branch to a closely-related basic block
in the function, typically the reachable successor of any predecessor.
This transformation is of course semantically invalid, but that does not
matter: By still preceding the branch with a call to the trap intrinsic,
execution will be halted and the invalid branch will never be executed.
The transformation only serves to restructure control flow and avoid
introducing warp divergent branches.

Finally, the third pass serves to hide calls to trap since LLVM in-
fers that any code following it is unreachable. The solution taken by
CUDAnative.jl and shown in Listing 14 is to replace the intrinsic by
opaque inline assembly that performs the same operation, but cannot
be analyzed by the LLVM optimizer.

3.5 CUDA API Wrapper

The CUDAnative.jl package provides functionality related to compiling
code forCUDAGPUs, but another important aspect of GPU applica-
tions is to interface directly with the device, e.g., to allocate memory,
upload compiled code, and manage execution of kernels. CUDA pro-
vides two mostly interchangeable interfaces for this: the low-level driver
..... . .API, and the runtime API with higher-level semantics and automatic
management of certain resources and processes.

The example CUDA C vector addition in Listing 15 uses the runtime
API to initialize and upload memory, launch the kernel, and fetch re-
sults. The syntax for calling kernels (line 29) hides much of the underly-
ing complexity: setting-up a parameter buffer, initializing the execution
configuration, acquiring a reference to the compiled kernel code, etc.

3.5. CUDA API WRAPPER 45

1 // auxiliary macros
2 #define cudaCall(err)
3 #define frand() (float)rand() / (float)(RAND_MAX)
4
5 __global__ void vadd(const float *a, const float *b, float *c) {
6 int i = blockIdx.x * blockDim.x + threadIdx.x;
7 c[i] = a[i] + b[i];
8 }
9

10 const int len = 100;
11
12 int main() {
13 // initialize data
14 float *a = new float[len], *b = new float[len];
15 for (int i = 0; i < len; i++) {
16 a[i] = frand();
17 b[i] = frand();
18 }
19 size_t bytesize = len * sizeof(float);
20
21 // allocate and upload
22 float *d_a, *d_b, *d_c;
23 cudaCall(cudaMalloc(&d_a, bytesize));
24 cudaCall(cudaMemcpy(d_a, a, bytesize, cudaMemcpyHostToDevice));
25 cudaCall(cudaMalloc(&d_b, bytesize);
26 cudaCall(cudaMemcpy(d_b, b, bytesize, cudaMemcpyHostToDevice));
27 cudaCall(cudaMalloc(&d_c, bytesize);
28
29 vadd<<<1, len>>>(d_a, d_b, d_c);
30
31 // fetch back
32 float *c = new float[len];
33 cudaCall(cudaMemcpy(c, d_c, bytesize, cudaMemcpyDeviceToHost));
34
35 // clean-up
36 cudaCall(cudaFree(d_c));
37 cudaCall(cudaFree(d_b));
38 cudaCall(cudaFree(d_a));
39 return 0;
40 }

Listing 15: Vector addition in CUDA C, using the CUDA run-time API.

46 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 using CUDAdrv, CuArrays
2
3 function vadd(a, b, c)
4 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
5 c[i] = a[i] + b[i]
6 return
7 end
8
9 # initialize data

10 len = 100
11 a = rand(Float32, len)
12 b = rand(Float32, len)
13
14 # allocate and upload
15 d_a = CuArray(a)
16 d_b = CuArray(b)
17 d_c = similar(d_a)
18
19 @cuda threads=len vadd(d_a, d_b, d_c)
20
21 # fetch back
22 c = Base.Array(d_c)

Listing 16: Vector addition in Julia using CUDAdrv.jl and CUDA-
native.jl.

To improve the usability of the CUDA API from Julia, we have cre-
ated the CUDAdrv.jl package4 wrapping the CUDA driver API. It offers
the same level of granularity as the driver API, but wrapped in high-
level Julia constructs for improved productivity. Similar to the CUDA
runtime API, it automates management of resources and processes, but
always allows manual control for low-level programming tasks. This
makes the wrapper suitable for both application developers and library
programmers.

Listing 16 shows an implementation of the vector addition from List-
ing 15 in Julia using CUDAdrv.jl for all device interactions. It shows
how the API wrapper vastly simplifies common operations: Memory al-
location and initialization is encoded through different constructors of
an array type (as provided by the CuArrays.jl package, but building on
CUDAdrv.jl), API error codes are automatically checked and converted
to descriptive exceptions, GPU memory is automatically freed by the
Julia garbage collector, etc.

4Available at https://github.com/JuliaGPU/CUDAdrv.jl

https://github.com/JuliaGPU/CUDAdrv.jl

3.6. RUN-TIME SYSTEM 47

3.6 Run-Time System
While no particular attention was paid so far to the fact that the Julia
compiler is aJIT compiler, the CUDAnative.jl run-time system makes
it possible to programGPUs using dynamic programming principles,
and to invoke those programs almost at the speed of statically-compiled
kernels.

3.6.1 Kernel Launching

Whereas launching a kernel fromCUDA C is a fully static phenomenon,
our @cuda Julia macro enables a much more dynamic approach. The
.....GPU compiler is invoked, and hence kernels are compiled, upon their
first use, i.e., right before an @cuda call is first evaluated. At that point,
the invoked kernel is specialized and optimized for both the active device
and the run-time types of any arguments. For additional, later occur-
rences of kernel invocations on arguments with different run-time types,
newly specialized and optimized code is generated.

The specialized host code that is generated from the @cuda invocation
in Listing 16 is shown in Listing 17. Lines 3 to 13 contain the result of
compile-time computations: Arguments to the @cuda macro are decoded
during macro expansion, and a generator function (not shown) precom-
putes values and determines the kernel function signature. This signa-
ture can differ from the types of the objects passed to @cuda, e.g., the
invocation on line 19 in Listing 16 passes CUDAdrv.Arrays, but the kernel
is compiled for GPU-compatible CuDeviceArray objects. The run-time
conversion of CUDAdrv.Array objects to their CuDeviceArray counterpart
happens as part cudacall on line 26.

In addition to recompiling specialized and optimized kernels for chang-
ing run-time types, the CUDAnative.jl run-time system keeps track of
the so-called method age, which indicates the time of definition of the
function or any of its dependents. The concept of method age was added
to the main Julia compiler in support of dynamic method redefinitions:
Whenever a source code fragment is edited, the containing method’s age
changes, and the new version will be used for future method calls.

CUDAnative.jl also supports this concept of age. At run time, the
method age and the active CUDA context are queried. These deter-
mine whether a kernel needs to be recompiled: A newer age indicates a
redefinition of the method or any callee, while the context determines
the active device and owns the resulting kernel object. These properties
are hashed with the type signature, and used to query the compilation
cache on line 21 of Listing 17. Upon a cache miss, the kernel is compiled

48 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 # results of compile-time computations
2 ## at parse time
3 grid = (1,1,1)
4 block = (len,1,1)
5 shmem = 0
6 stream = CuDefaultStream()
7 kernel = vadd
8 args = (d_a, d_b, d_c)
9 ## during type inference

10 types = (CuDeviceArray{Float32,2,AS.Global},
11 CuDeviceArray{Float32,2,AS.Global}
12 CuDeviceArray{Float32,2,AS.Global})
13 partial_key = hash(kernel, types)
14
15 # determine the run-time environment
16 age = method_age(kernel, $types)
17 ctx = CuCurrentContext()
18 key = hash(partial_key, age, ctx)
19
20 # cached compilation
21 kernel = get!(kernel_cache, key) do
22 dev = device(ctx)
23 compile(dev, kernel, types)
24 end
25
26 cudacall(kernel, types, args, grid, block, shmem, stream)

Listing 17: Lowered code generated from the @cuda invocation in List-
ing 16.

3.6. RUN-TIME SYSTEM 49

and added to the cache. Finally, control is handed over to CUDAdrv.jl
on line 26 where arguments are converted and the kernel is launched.

The above calling sequence has been carefully optimized: Run-time
operations are avoided as much as possible, caches are used to prevent
redundant computations, code is specialized and aggressively inlined
to avoid unnecessary dynamic behavior (e.g., iterating or introspecting
arguments or their types), etc. The fast path, i.e., when no device
code needs to be compiled, contains only the bare minimum interac-
tions with the Julia compiler and CUDAAPI. As a result, the time
it takes to launch a kernel is almost equivalent to a fully static kernel
call in CUDA C (see Section 3.7.6), despite all dynamic programming
capabilities. When code does need to be compiled, the time it takes to
do so is acceptably low for interactive programming purposes, as will be
evaluated in Section 3.7.4.

3.6.2 Interactive Programming

The support for method redefinitions with CUDAnative.jl makes it pos-
sible to program aGPU interactively, e.g., using Project Jupyter, a
popular programming environment among scientists and teachers for
programming interactively in Julia, Python or R [118, 122]. The environ-
ment revolves around so-called notebooks, documents that can contain
both computer code, the results from evaluating that code, and other
rich-text elements. The contents of these notebooks can be changed or
evaluated in any order and at any time, requiring a great deal of flexibil-
ity from the underlying execution environment, e.g., to recompile code
whenever it has been edited. CUDAnative.jl makes it possible to use this
highly dynamic style of programming in combination with GPUs, for ex-
ample to develop GPU kernels by iteratively redefining device methods
and evaluating the output or performance.

This capability provides an excellent demonstration of the advan-
tages of (i) our vision of adding interfaces for main compiler repurposing,
and (ii) our implementation ofCUDA with a pure Julia device package.
This enables tight integration of GPU support into the existing com-
piler, which in turn makes the integration of GPU support in a project
like Jupyter seamless, both for the developers of the GPU support, and
from the perspective of Jupyter users, who get the same interactivity
for host and GPU programming. All we needed was a careful design of
the compilation cache, which was needed anyway, and 5 lines of code to
include the method age in the hashes used to access the cache.

50 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

3.6.3 Reflection and Introspection

The preexisting implementation of Julia forCPUs offers a variety of
high-level tools that help the programmer work with the compiler and
the code that it generates. For example, functions are represented by
first-class objects that can be assigned and passed around, the compiler
can be queried to retrieve source code for these functions or inspect the
generated code, several logging features can be activated to have the
compiler report or time each action, etc.

CUDAnative.jl offers similar functionality that offers an unprece-
dented window into theGPU compiler. Listing 18 demonstrates the dif-
ferent @device_code macros: Each of them configure the CUDAnative.jl
compiler to save and return one specific form of intermediate code as it
exist during compilation, and can be used to debug compilation failures,
optimize performance, or ensure GPU execution. The macros mimic
the well-known @code macros as they exist for the Julia CPU compiler,
with the difference that they report on all executed GPU kernels that
occur during evaluation of the right-hand side expression. This makes
it possible to reflect on complex applications without direct access to
the expressions that launch kernels: Instead of wrapping the innermost
GPU kernel invocations within a codebase, the user only need to sur-
round any outer expression, e.g., the call to main, with a @device_code
macro to catch all consequent GPU executions.

Where the @device_code macros are primarily intended as a debug-
ging tool, CUDAnative.jl also offers first-class introspection functional-
ity that can be used as part of an application. Listing 19 demonstrates
the use of kernel objects: Compiled kernels are represented by first-class
objects for which properties like the memory usage, register usage, or
maximal thread usage can be queried. These properties can be used to
determine the optimal launch configuration, compile the kernel differ-
ently (e.g., coaxing thePTXJIT into using fewer registers by specifying
the maxregs option to cufunction), or switch to a different implemen-
tation of the algorithm. Such low-level control can be useful to ensure
compatibility with a low-end GPU, to maximize occupancy, etc.

3.7 Evaluation
To asses the performance of low-levelGPU applications written in Julia,
we have portedCUDA C benchmarks from the Rodinia benchmark suite
for heterogeneous computing [41] to Julia with CUDAnative.jl.5

5Available at https://github.com/JuliaParallel/rodinia/

https://github.com/JuliaParallel/rodinia/

3.7. EVALUATION 51

1 julia> @device_code_lowered @cuda threads=len vadd(d_a, d_b, d_c)
2 1-element Array{Any,1}:
3 CodeInfo(
4 1 ...
5 | return
6)
7
8 julia> @device_code_typed @cuda threads=len vadd(d_a, d_b, d_c)
9 1-element Array{Any,1}:

10 CodeInfo(
11 1 ...
12 | return
13) => Nothing
14
15 julia> @device_code_llvm @cuda threads=len vadd(d_a, d_b, d_c)
16 define void @ptxcall_vadd({ [1 x i64], { i64 } } %a,
17 { [1 x i64], { i64 } } %b,
18 { [1 x i64], { i64 } } %c) {
19 entry:
20 ...
21 ret void
22 }
23
24 julia> @device_code_ptx @cuda threads=len vadd(d_a, d_b, d_c)
25 .visible .entry ptxcall_vadd(.param .b8 a[16],
26 .param .b8 b[16],
27 .param .b8 c[16]) {
28 ...
29 ret;
30 }
31
32 julia> @device_code_sass @cuda threads=len vadd(d_a, d_b, d_c)
33 ptxcall_vadd:
34 ...
35 RET;

Listing 18: Introspecting code generated by the CUDAnative.jl compiler
for the kernel invocation in Listing 16.

52 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

1 julia> args = (d_a, d_b, d_c)
2 (object of type CuArray{2,Float32},
3 object of type CuArray{2,Float32},
4 object of type CuArray{2,Float32})
5
6 julia> compatible_args = cudaconvert.(args)
7 (object of type CuDeviceArray{2,Float32,AS.Global},
8 object of type CuDeviceArray{2,Float32,AS.Global},
9 object of type CuDeviceArray{2,Float32,AS.Global})

10
11 julia> types = typeof.(compatible_args)
12 (CuDeviceArray{Float32,1,CUDAnative.AS.Global},
13 CuDeviceArray{Float32,1,CUDAnative.AS.Global},
14 CuDeviceArray{Float32,1,CUDAnative.AS.Global})
15
16 julia> kernel_object = cufunction(vadd, types)
17 object of type CUDAnative.Kernel
18
19
20 julia> CUDAnative.registers(kernel_object)
21 24
22
23 julia> CUDAnative.memory(kernel_object)
24 (local = 8, shared = 0, constant = 0)
25
26 julia> CUDAnative.maxthreads(kernel_object)
27 1024

Listing 19: Construction of a kernel object and introspection of its prop-
erties, based on the kernel from Listing 16.

3.7. EVALUATION 53

To enable an accurate performance comparison, we have translated
the kernel code as literally as possible, without performing optimizations
or changes to make them more Julia idiomatic. Still, there are plenty of
semantic differences between the C and Julia language that required a
significant effort: Arrays are represented by objects instead of pointers
(ruling out pointer arithmetic), indexing is column major and uses 1-
based indices, types of literals as well as their promotion behavior differs,
etc. Having limited resources, we selected the smallest benchmarks of
the suite (in terms of line count), also taking into account the use of
GPU features that are not yet supported by CUDAnative.jl, such as
constant memory. Apart from the latter, our selection of benchmark is
in no way biased by the features of their kernels.

The non-kernel code was mostly translated literally from C to Julia,
sometimes at the expense of performance. For example, many bench-
marks initialize matrices with double for loops, processing elements in
row-major order. As Julia uses column-major storage, we changed the it-
eration order of these loops, unless that would result in a major redesign
of the benchmark.

3.7.1 Experimental Set-Up

.CUDA C code is compiled with the NVIDIA CUDA compiler version
9.1.85, NVIDIA driver 390.59, and Linux 4.9.0 from Debian Stretch
(64-bit). Julia measurements are done with the first release candidate
of Julia 0.7 and publicly available Julia packages CUDAnative.jl 0.8.4,
CUDAdrv.jl 0.8.4 and LLVM.jl 0.9.12 usingLLVM 6.0. Our test system
contains an NVIDIA GeForce GTX 1080GPU, two quad-core Intel Xeon
E5-2637 v2CPUs, and 64 GiB of DDR3 ECC memory.

3.7.2 Methodology

All execution times reported in Tables 3.2 and 3.3 are in milliseconds,
and show the mean value with error margins determined by propagating
the standard deviation across operations [62]. The results are obtained
by launching each benchmark multiple times on a fully idle machine,
where each process first runs the application code 5 times to warm up
the system. We measure execution times with the nvprof tool from the
.....CUDA toolkit, and use the NVTX (NVIDIA Tools Extensions) library
to extend the profile withCPU timings. Benchmark inputs are the
defaults parameters from Rodinia 3.1, as shown in Table 3.4.

Some interesting observations can be made up-front. First, the of-
ten near-zero fractions in columns (b/a) and (d/c) in Table 3.2 and Ta-

54 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

lud 3 263 1.1 ±6.2% 126 1588 0.42 ±0.7% 39%

particlefilter 4 611 60.1 ±0.5% 152 2063 38.60 ±0.2% 64%

backprop 2 631 40.6 ±4.7% 56 230 0.19 ±0.3% 0%

nw 2 340 50.9 ±15.2% 118 1341 1.89 ±0.2% 4%

leukocyte 3 1665 181.8 ±1.1% 384 1474 86.09 ±0.1% 47%

pathfinder 1 166 196.9 ±2.3% 49 163 0.25 ±0.5% 0%

hotspot 1 265 137.4 ±1.3% 91 237 0.11 ±0.5% 0%

nn 1 270 253.6 ±1.6% 11 53 0.03 ±0.7% 0%

bfs 2 184 1278.1 ±0.9% 33 143 6.49 ±0.2% 1%

streamcluster 1 952 6457.2 ±5.1% 28 202 510.61 ±0.5% 8%

average ±3.9% ±0.4% 16%

benchmark

run time run time

total GPU kernel

(b)
kernels

(a)
LOC PTX (b/a)LOC

CUDA C

Table 3.2: Features and performance of selected Rodinia benchmarks
implemented in CUDA C.

lud 3 202 478.9 ±1.0% 110 2586 0.48 ±0.4% 0.10% 477.5 ±1.0% 100% 1.4 ±5.4% 0.29%

particlefilter 4 409 522.5 ±1.8% 123 1304 34.30 ±1.3% 6.56% 480.5 ±1.8% 92% 42.0 ±2.3% 8.04%

backprop 2 317 105.8 ±3.7% 54 257 0.17 ±0.8% 0.16% 62.3 ±1.8% 59% 43.5 ±6.4% 41.14%

nw 2 255 214.7 ±3.0% 110 633 1.94 ±0.2% 0.90% 169.1 ±1.2% 79% 45.6 ±9.8% 21.26%

leukocyte 3 856 725.2 ±2.9% 275 1344 67.92 ±0.1% 9.37% 434.0 ±1.7% 60% 291.2 ±4.6% 40.16%

pathfinder 1 140 237.2 ±2.8% 52 152 0.25 ±0.8% 0.10% 38.7 ±2.1% 16% 198.6 ±3.0% 83.70%

hotspot 1 228 184.7 ±1.7% 87 247 0.11 ±0.3% 0.06% 65.4 ±1.7% 35% 119.3 ±1.7% 64.61%

nn 1 148 505.7 ±3.7% 11 61 0.03 ±1.6% 0.01% 100.1 ±1.8% 20% 405.6 ±4.2% 80.21%

bfs 2 135 1688.4 ±2.2% 28 161 6.03 ±0.1% 0.36% 40.4 ±1.5% 2% 1648.0 ±2.3% 97.61%

streamcluster 1 647 6827.6 ±3.4% 30 162 501.95 ±0.0% 7.35% 31.2 ±1.8% 0% 6796.4 ±3.4% 99.54%

average ±2.6% ±0.6% ±1.6% ±4.3%

benchmark kernels

JULIA

total GPU kernels JIT compilation total - JIT

LOC
(c)

LOC (f/c)
run time run time run time run time

PTX
(d)

(d/c)
(e)

(e/c)
(f = c-e)

Table 3.3: Features and performance of selected Rodinia benchmarks
implemented in Julia using CUDAnative.jl

3.7. EVALUATION 55

Benchmark Input parameters
backprop input_points=65536
bfs file=graph1M.txt (graph with 1048576 nodes)
hotspot grid_rows_cols=512 pyramid_height=2 sim_time=2

temperature_file=temp_512 (matrix of 512x512 values)
power_data=power_512 (matrix of 512x512 values)

leukocyte frames=10 input=testfile.avi (176MB video)
lud matrix_dim=256
nn records=5 latitude=30 longitude=90

input=list640k_64.txt (64 × 100k hurricanes)
nw max_rows=2048 max_rows=2048 penalty=10
particlefilter dim_x=128 dim_y=128 frames=10 particles=10000

(executed in double-precision mode)
pathfinder cols=100000 rows=100 pyramid_height=20
streamcluster min_centers=10 max_centers=20 dimensions=256

points=65536 chunk_size=65536 cluster_size=1000

Table 3.4: Default input parameters from Rodinia 3.1

ble 3.3 indicate that the Rodinia benchmarks spend only a fraction of
their time inGPU kernels. As our contributions are almost exclusively
in the generation of those kernels, it follows that total execution time of
Rodinia benchmarks is not a good metric to evaluate our contributions.
Secondly, the small error rates on kernel execution times reveal that,
despite their short run times, they are very well suited for a reliable
comparison of kernel performance, i.e., for assessing our contributions.
Finally, those short run times result from running kernels on unrealisti-
cally small data sets, and are not representative of kernel run times in
real-world GPU deployments. The ratio between the kernel run times
and other contributions to the total execution times is therefore mostly
meaningless.

3.7.3 Kernel Performance
Table 3.5, Figure 3.2 show how, on average, we measure a speedup of 4%
compared toCUDA C kernels compiled with nvcc, the official compiler
by NVIDIA for CUDA C code. This shows how CUDAnative.jl can be
realistically used forGPU kernel programming. Furthermore, the result
is close to the relative speedup of 1% as achieved by gpucc on a wider

56 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

GPU kernels total total - JIT

lud 3 1,14 439,49 1,26

particlefilter 4 0,89 8,69 0,70

backprop 2 0,88 2,60 1,07

nw 2 1,03 4,22 0,90

leukocyte 3 0,79 3,99 1,60

pathfinder 1 1,01 1,21 1,01

hotspot 1 1,03 1,34 0,87

nn 1 1,00 1,99 1,60

bfs 2 0,93 1,32 1,29

streamcluster 1 0,98 1,06 1,05

average 0,96 3,87 1,10

benchmark kernels

JULIA/CUDA C

(d/b) (f/a)(c/a)

Table 3.5: Performance comparison of selected Rodinia benchmarks im-
plemented in Julia using CUDAnative.jl vs CUDA C.

leu
ko

cy
te

ba
ck

pr
op

pa
rti

cle
filt

er bfs

str
ea

mclu
ste

r nn

pa
th

fin
de

r nw

ho
tsp

ot lud
−17%

0%

22%

3.82%

sp
ee

du
p

vs
C

U
D

A
C

Rodinia
geomean

Figure 3.2: Visualization of the GPU kernel performance ratio from
Table 3.5 of selected Rodinia benchmarks implemented in Julia using
CUDAnative.jl vs CUDA C.

3.7. EVALUATION 57

range of Rodinia benchmarks [155]. gpucc is an open-source compiler
for CUDA C code, built on the sameLLVM back end as CUDAnative.jl.
We can conclude from this result that using Julia for GPU kernel pro-
gramming does not incur a substantial slowdown. The difference in per-
formance compared to gpucc can be attributed to only testing a subset
of Rodinia, but also to improved vectorization due to optimized variable
alignment characteristics that differ from C.

The slowdown as observed with the lud benchmark can be attributed
to Julia defaulting to 64-bit integers on 64-bit hardware. In contrast, C
language compilers only use 32 bits to represent int values. The large
speedups as seen with particlefiler, backprop and leukocyte are a re-
sult of load-store vectorization at the LLVM level whereas nvcc relies on
ptxas to perform this optimization onPTX code. These optimizations
are peephole transformations that work on low-level machine code, and
as such are less powerful than optimizations by LLVM on its higher-level
compilerIR.

3.7.4 Compilation Overhead

Looking at total application performance in Table 3.5, we measure an
overwhelming 287% overhead. Much of that overhead can be attributed
to the time it takes toJIT compile code. However, consistently taking
less than a second to compile the kernels (column e in Table 3.3), these
large fractions of the total run time spent on JIT compilation are more a
side effect of the benchmarks’ short-running kernels than of the excessive
compilation times. Real-worldGPU applications typically execute the
same kernels on the same types of data over and over again, for which
kernels only need to be compiled once. Such sub-second JIT compilation
times will be amortized (almost) completely in real-world applications.
Even within our range of benchmarks running anywhere in between 1 ms
and 6827 ms, this amortization can already be observed in the decreasing
numbers in column (e/c) of Table 3.3. We thus conclude that the Julia
JIT compilation is fast enough not to impose a performance burden for
real-world GPU applications.

It is noteworthy that almost no JIT compilation time is spent outside
the kernels: almost all non-kernel code, i.e, almost all host code, is either
compiled ahead of time or interpreted according to heuristics in the Julia
compiler [109, 81].

In interactive programming settings such as Jupyter, kernels are re-
compiled when their code has been edited, or when other code edits
result in kernels being invoked on new data types. Moreover, while code
is still being developed, it will often be invoked on smaller data sets for

58 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

testing. In such a setting, individual kernel JIT compilation times do
matter, as they are not amortized. For the selected Rodinia kernels, Ta-
ble 3.3 shows how individual kernel compilation times range from 12 to
283 ms, with a median compilation time of 70 ms; this is sufficiently low
for realistic interactive development.

The JIT compilation times are strongly correlated with the sizes of
the kernels in number ofPTX instructions, more so than with the num-
ber of JuliaLOC, with correlation coefficients of respectively 0.91 and
0.69. One reason is loop unrolling: when the compiler unrolls loops, even
small ones in LOC can become big in terms ofIR that the compiler needs
to handle. The PTX sizes for Julia kernels are typically somewhat larger
than, and in some cases notably smaller than, theCUDA sizes, without
this resulting in comparably large performance differences. The reason
is that PTX code, be it statically-compiled CUDA C or JIT-compiled
Julia, is further optimized by the PTX assembler as part of the CUDA
driver before execution. That final optimization step performs several
peephole optimizations, removing most remaining differences between
PTX versions of the kernels.

3.7.5 Application Performance

If we disregard the compilation overhead, Table 3.5 shows how total
application performance of the selected Rodinia benchmarks performs
10% slower in Julia with CUDAnative.jl than it does in C withCUDA C.
On the one hand, these times are not very relevant as our contributions
are not related directly to host code. On the other hand, the numbers
show that the host computation times of Julia code compare pretty well
to those of C code, despite the fact that we invested a limited effort to
optimize the literally translated Julia code.

Where benchmarks perform considerably worse, this is due to the
ports being literal translations of C code. For example, leukocyte de-
pends on global mutable data that necessitates heap allocations given
Julia semantics, and processes data in row-major order. The nn bench-
mark generates large amounts of heap-allocated strings during parsing.
High-performance text parsing functionality from, e.g., the TextParse.jl
package could be used instead, but such an implementation would dif-
fer significantly from the C version of the benchmark. On average, our
measurements show that for the host part of JuliaGPU applications,
performance comparable to that of programs written in C can be ex-
pected. This result is consistent with existing literature [31, 23, 123].

3.7. EVALUATION 59

GPU time CPU time
CUDA C (5.88 ± 0.23) µs (12.77 ± 0.23) µs
CUDAdrv.jl (7.28 ± 0.76) µs (13.85 ± 0.78) µs
CUDAnative.jl (7.19 ± 0.46) µs (13.38 ± 0.52) µs

Table 3.6: GPU and CPU execution times for launching an empty kernel
from CUDA C and Julia.

For GPU applications, which also performs GPU-related tasks in the
form ofAPI interactions such as memory copies, device configuration,
etc., this result is novel. It stems from the design of CUDAdrv.jl: Al-
though the Julia wrappers to the CUDA APIs are high-level, they work
on the same abstraction level as CUDA. This improves usability, but
maintains flexibility while avoiding performance traps. The actual li-
brary calls use Julia’s high-performance CFFI, which generates code to
call C functions without run time overhead.

3.7.6 Run-Time System Performance

The comparable host-.....GPU interaction performance betweenCUDA C
and CUDAnative.jl applications also results from their comparable ker-
nel launching times. With statically compiled C, the run-time cost of
launching a kernel is dominated by the CUDA libraries. In the case
of CUDAnative.jl, Section 3.6 described how launching a kernel entails
many more tasks with the goal of a highly dynamic programming en-
vironment: converting arguments, (re)compiling code, instantiating a
CUDA module and function object, etc. These code paths have been
carefully optimized to avoid run-time overhead as much as possible.

To determine this overhead, we launch an empty kernel and measure
the elapsed execution time, both on the GPU using CUDA events and
on theCPU using regular wall-clock timers. Table 3.6 shows these mea-
surements for statically-compiled C code using the CUDA driverAPI,
Julia code performing the exact same static operations with CUDAdrv.jl,
and dynamic Julia code using CUDAnative.jl to compile and execute
the empty kernel. Neither of the GPU and CPU time measurements
show significant overhead when only using CUDAdrv.jl. When using
CUDAnative.jl, which internally uses CUDAdrv.jl, minimal overhead is
introduced by the check for the current method age. We consider this
negligible: In the case of realistic kernels it is dwarfed by the time to
copy the kernel parameter buffer to the device.

60 CHAPTER 3. CUDA LANGUAGE IMPLEMENTATION

str
ea

mclu
ste

r nn

ba
ck

pr
op bfs

leu
ko

cy
te

pa
rti

cle
filt

er

pa
th

fin
de

r

ho
tsp

ot nw lud
0%

20%

40%

60%

80%

100%

lin
es

of
co

de

CUDA Julia
device
host

Figure 3.3: Lines of host and device code of selected Rodinia benchmarks,
normalized against the total LOC of their CUDA C implementations.
On average, the Julia versions are 32% shorter: device code is reduced
by 8%, while the amount of host code is reduced by 38%.

3.7.7 Lines of Code
As discussed above, we maintained the semantics of the originalCUDA C
benchmarks in their Julia translation. Even then, we were able to ex-
press many operations much more succinctly. For example, interactions
with the file system (reading paths and processing their contents), mem-
ory management, generating output, etc. can be written in fewer lines of
code, relying on higher-level language features like string interpolation
or scoped resource cleanup. As a technical computing language, Julia
also provides high-level tools to process data, such as an interface to
.....BLAS, and syntax to express operations on multidimensional data com-
pactly [76]. Finally, the CUDAAPIs are similarly accessible through
high-level wrappers, which are semantically equivalent to the C APIs
but allow for much more succinct invocations.

As a result, theLOC counts visualized in Figure 3.3 show an aver-
age reduction of 37% in LOC for the host part of the benchmarks. The
device LOC only decreases 8%, asGPU code does not interface with
complicated APIs, and as it does not use multidimensional expressions
but typically processes scalar items as per the GPU’s execution model.
Even so, this style of Julia GPU programming significantly improves
the programming experience, with, e.g., dynamic types, checked arith-
metic, an improved programming environment, etc. On average, the
total application LOC is reduced by 31%. Although this is indicative
of a reduction in developer effort, familiary with GPUs and their pro-
gramming model is still a requirement. The next chapter will discuss a
higher-level approach, with abstractions that obviate GPU experience.

Chapter 4
High-Level Array
Programming with GPUs

This chapter will discuss high-level array programming, where com-
putations are expressed through operations on arrays. This is a pro-
gramming style that is commonly used during application prototyping.
The Julia programming language greatly improves the usability and ca-
pability of these array operations by relying on a compiler to provide
higher-order abstractions. We will demonstrate the use of these array
abstractions using several engineering applications.

Programming with arrays trivially exposes plenty of parallelism, and
is a good fit for programmingGPUs without GPU programming experi-
ence. As such, there exist many array programming libraries that target
these parallel hardware accelerators. We have developed a similar so-
lution for Julia, building on the GPU compiler from Chapter 3. Our
implementation also covers Julia’s higher-order array abstractions in or-
der to improve the GPU programming experience. The performance of
these abstractions will be evaluated in Chapter 5.

Initial research into a library with GPU array abstractions building
on CUDAnative.jl was done by Mike Innes of Julia Computing, provid-
ing proof-of-concept implementations for the purpose of accelerating the
Flux.jl machine-learning package. The author of this dissertation has
continued that research, improving performance and adding abstractions
that are compatible with a wider range of array applications, and is now
the principal author of the CuArrays.jl package.

The main scientific contribution of this chapter is an im-
plementation of Julia’s array abstractions for GPUs using the
compiler from Chapter 3. The design of these abstractions of-
fers run-time flexibility that is novel in the context of GPU
programming. We demonstrate this flexibility with realistic
applications from the domain of computer engineering. These
contributions have been published in a peer-reviewed journal.1

1Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De Sutter. “Rapid
Software Prototyping for Heterogeneous and Distributed Platforms”. In: Advances in
Engineering Software (AES) (2019). doi: 10.1016/j.advengsoft.2019.02.002.

https://doi.org/10.1016/j.advengsoft.2019.02.002

62 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

4.1 Example Applications

Data science and engineering problems are commonly expressed in terms
of vectorized operations, especially during initial prototyping. This natu-
ral, concise representation makes it easier to iterate over different imple-
mentations. They avoid the typical non-functional boilerplate of scalar
processing of data items such as specifying loop bounds, indexing calcu-
lations, etc.

To illustrate this, we introduce three examples that are relevant to
computer-based engineering techniques: the power method to calculate
eigenvalues, gradient descent to minimize a loss function, and the Kro-
necker product of two matrices. These examples represent different lev-
els of application complexity, and demonstrate different aspects of ar-
ray programming. We have implemented the examples in Julia, using
high-level, idiomatic code that stays as close as possible to the original
mathematical descriptions.

4.1.1 Power Iteration

The power method serves as the first, simplest example. This is an eigen-
value algorithm, approximating the dominant eigenvalue of a diagonal-
izable matrix by means of an iterative algorithm [105]. The associated
eigenvalue is then computed using the Rayleigh quotient. The Julia im-
plementation in Listing 20 mirrors the high-level descriptions of these
algorithms from the corresponding Wikipedia pages,2,3 and uses simple
operations on arrays, such as the dot product, matrix-vector multiplica-
tion, the Euclidean norm of a vector, and element-wise division. The
parameter p of the domeigen function defines the number of iterations
the method should perform.

Note that like all other listings in this chapter, Listing 20 is not
pseudo code. It is pretty printed Julia source code. The ability to write
such code, using a Unicode character set, allows engineers to produce
very readable source code, at the mathematical level of abstraction at
which they prefer to reason and to express their ideas.

The raison d’être of this example is to demonstrate an imperative
application that only uses simple, standard array operations, i.e., limited
to those defined in the base language libraries, and that does not require
additional external functionality.

2https://en.wikipedia.org/wiki/Power_iteration
3https://en.wikipedia.org/wiki/Rayleigh_quotient

https://en.wikipedia.org/wiki/Power_iteration
https://en.wikipedia.org/wiki/Rayleigh_quotient

4.1. EXAMPLE APPLICATIONS 63

1 using LinearAlgebra
2 using Random
3
4 function domeigen(A, p)
5 b0 = similar(A, size(A, 1))
6 rand!(b0)
7
8 # power iteration
9 bk = b0

10 for _ in 1:p
11 bk+1 = A * bk
12
13 # normalize
14 bk = bk+1 / norm(bk+1)
15 end
16
17 # Rayleigh quotient
18 λ = (A*bk · bk) / (bk · bk)
19
20 return bk, λ
21 end

Listing 20: Power method implementation approximating the dominant
eigenvector and eigenvalue of a matrix.

4.1.2 Proximal Gradient Descent

Listing 21 implements a more complex example that combines array op-
erations with a generically typed external library that extends the base
language. The array operations now also include higher-order abstrac-
tions that compose with arbitrary user code.

Specifically, the example implements proximal gradient descent to
minimize the squared error loss of a linear regression model. The ex-
ample uses the ForwardDiff.jl package to determine the gradient and
derivative of the loss function as defined by the user [127]. This pack-
age implements forward-mode automatic differentiation in Julia. Under
the hood, it specializes user code to generate efficient machine code
for computing derivatives. The ability to differentiate arbitrary user
code distinguishes this Julia package from other automatic differentia-
tion libraries. Many existing ML (Machine Learning) frameworks either
require engineers to pick functions from a fixed library of functions for
which gradients have been defined, while others can compute custom
derivatives but only if the original function had been specified as a com-
putational graph. By enabling us to differentiate arbitrary imperative

64 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 using ForwardDiff: gradient, derivative
2 using LinearAlgebra
3
4 # model
5 linear_regression(w, b, x) = w*x .+ b
6
7 # loss function
8 abs2(x) = abs(x^2)
9 mean_squared_error(ŷ, y) = sum(abs2, ŷ .- y) / size(y,2)

10
11 # get gradient w.r.t. to 'w'
12 loss∇w(model, loss, w, b, x, y) =
13 gradient(w -> loss(model(w, b, x), y), w)
14
15 # get derivative w.r.t. to 'b'
16 loss∂b(model, loss, w, b, x, y) =
17 derivative(b -> loss(model(w, b, x), y), b)
18
19 # optimization algorithm
20 function proximal_gradient_descent(model, loss, w, b, x, y; lr=.1)
21 w -= lmul!(lr, loss∇w(model, loss, w, b, x, y))
22 b -= lr * loss∂b(model, loss, w, b, x, y)
23 return w, b
24 end
25
26 function main()
27 # inputs and outputs
28 x = ...
29 y = ...
30
31 # initial weights and bias
32 w = ...
33 b = ...
34
35 model = linear_regression
36 loss = mean_squared_error
37 optimize = proximal_gradient_descent
38
39 while current_loss > ...
40 w, b = optimize(model, loss, w, b, x, y)
41 current_loss = loss(model(w, b, x), y)
42 end
43 end

Listing 21: Implementation of an ML model using proximal gradient
descent method to minimize a squared error loss function.

4.1. EXAMPLE APPLICATIONS 65

code, ForwardDiff.jl improves productivity as well as flexibility of ML
frameworks built on top of this package.

The proximal_gradient_descent function takes parameters that are
common to many ML algorithms: w and b for respectively the vector of
weights and the bias, while x and y represent the inputs and outputs
that should be learned. The learning rate parameter lr is optional and
defaults to 0.1. The function is to be called iteratively, and the weights
and bias are updated in every iteration until the loss falls below an
acceptable threshold.

Note that both the model and loss functions, of which lines 5 and 9
show examples, are defined independently from the optimization algo-
rithm in proximal_gradient_descent. The model and loss functions
are passed to the optimization algorithm as arguments, and they are
simply passed on to anonymous functions that are themselves fed to
the gradient and derivative functions from the ForwardDiff.jl library
on line 12. This generalizes the implementation and makes it possible
for the developer to iterate independently on each aspect of the imple-
mentation (loss, model, and optimization algorithm).

From the compiler’s perspective, the gradient and derivative func-
tions on lines 12 and 16 return dynamically-generated code. The Julia
run-time compiler then generates specialized and statically optimized
machine code. The design of the Julia language and its compiler, de-
scribed in detail in Section 2.3, makes it possible to deliver good perfor-
mance and enable code generation for accelerators, such asGPUs, that
require static code.

The simple code of Listing 21 performs various operations on arrays
much like those in Listing 20, but it also uses abstractions that compose
with user code. For example, the loss function on line 9 calls the stan-
dard library operation sum with the user-defined function abs2, which is
applied to all elements before they are summed. We will later discuss
how this makes it possible to separate the concerns of application code
from how the underlying abstractions are implemented.

The demonstrated composability with an external library, together
with the portability to heterogeneous computing devices, greatly im-
proves the ability to reuse code.

4.1.3 Kronecker Product

Finally, we describe a scenario where a more advanced user prototypes
an algorithm by means of declarative code instead of an imperative sub-
program. Specifically, Listing 22 implements the Kronecker product of

66 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 struct Kronecker{T,N,AT} <: AbstractArray{T,N}
2 A::AT
3 B::AT
4 function Kronecker(A::AT, B::AT) where
5 {T, N, AT<:AbstractArray{T,N}}
6 new{T,N,AT}(A, B)
7 end
8 end
9

10 Base.size(K::Kronecker) = size(K.A) .* size(K.B)
11
12 function Base.getindex(K::Kronecker, i::Int, j::Int)
13 I,Ix = divrem(i-1, size(B,1))
14 J,Jx = divrem(j-1, size(B,2))
15 K.A[I+1,J+1] * K.B[Ix+1,Jx+1]
16 end

Listing 22: Declarative implementation of the Kronecker product of two
matrices.

two matrices, A⊗B, where every element of the first matrix is multiplied
with every element of the second matrix:

A ⊗ B =

A11B . . . A1nB
...

Am1B . . . AmnB



=



A11B11 . . . A11B1q A1nB11 . . . A1nB1q
...

...
A11Bp1 . . . A11Bpq A1nBp1 . . . A1nBpq

...
...

...
...

...
...

Am1B11 . . . Am1B1q AmnB11 . . . AmnB1q
...

...
Am1Bp1 . . . Am1Bpq AmnBp1 . . . AmnBpq


Instead of defining an imperative function that constructs an output

matrix and eagerly computes the value for every element, we define a
Kronecker type that lazily computes individual values when requested.
This is called a structured matrix [71]. It is a common pattern in the
Julia programming language, which provides many such arrays as part of
the standard library. This example will demonstrate how our approach
is composable with such infrastructure from the standard library.

4.1. EXAMPLE APPLICATIONS 67

1 function LinearAlgebra.norm(K::Kronecker, p::Real=2)
2 A = norm(K.A, p)
3 B = norm(K.B, p)
4 return A * B
5 end

Listing 23: Optimized computation of the matrix norm for Kronecker
products.

Just like any other array type, Kronecker is a subtype of AbstractArray,
which mandates certain method definitions. One of those methods is the
getindex method, which is used to get the value of an array that corre-
sponds with a certain index. Whereas this method typically loads from
memory, we implement it for the Kronecker type to compute a single
value according to the definition of the Kronecker product.

Expressing computation declaratively using lazy arrays has several
advantages: first and foremost, it saves on memory usage and avoids
unnecessary computations. Furthermore, we can provide optimized im-
plementations of certain methods by using problem-specific knowledge.
For example, in the case of the Kronecker product we know from [88]
that for matrices A and B the norm can be computed as:

||A ⊗ B|| = ||A|| ||B||

We use this property of the Kronecker product to implement an op-
timized version of the norm function in Listing 23. This optimization
greatly improves performance, as it prevents materialization of the Kro-
necker wrapper and as a result reduces the size of the matrices that need
to be processed.

The approach from Listing 22 also composes with other lazy wrap-
pers. For example, the Julia standard library avoids materializing ma-
trix transpositions by using a Transpose wrapper that implements the
expected indexing semantics. This wrapper type is also part of the
AbstractArray hierarchy. It can hence be used as an input to our
Kronecker type without materializing the wrapper. These and other
opportunities for composability will be discussed in Chapter 5.

68 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

4.2 Related Work
In this chapter we focus on array abstractions and linear algebra, since
that is the programming model most commonly used in the prototyping
stage of engineering applications. Indeed MATLAB, NumPy [148] and
a host of other languages that lend themselves more or less naturally
to technical computing use the same programming model. High-level
dynamic languages often use this model not only for its expressibility,
but because they can implement the functionality as libraries in a low-
level programming language and thereby gain performance [35, 129].

Array programming is also popular for working with heterogeneous
devices. For example, in C and C++ there isCUB [104], Thrust [70], Ar-
rayFire [101], OpenMP [49], OpenACC [154] and several others. These li-
braries achieve excellent performance, but require expertise in a low-level
language and as such require a higher investment in time and effort to be-
come proficient. Examples for higher-level languages that focus on pro-
grammer productivity include Anaconda Accelerate,GPU-accelerated
numerical libraries for Python [47]; Parakeet, a runtime accelerator for
an array-oriented subset of Python [130]; accelerate, a language for accel-
erated array processing in Haskell [38]; Copperhead, another functional
data-parallel subset of Python [37], etc.

Frameworks for array programming in high-level languages are typ-
ically built on top of libraries that are implemented in a low-level lan-
guage, either for performance, to be able to use the low-level vendor
toolkits for working with hardware accelerators, or both. This split
between the programming language that main application developers
write in and the programming language that is used to implement the
libraries, is an instance of the two-language problem and causes compos-
ability and extensibility problems [31, 100]. Once developers exhaust
the functionality of the library and require custom functionality, e.g.,
because they want to take advantage of problem-specific knowledge as
shown in the Kronecker example from Section 4.1.3, the library approach
starts to break down and they have to resort to writing their code in
the low-level language. Numba is a rare exception since it allows het-
erogenous programming in the same language, but it still struggles with
composability and allowing for user-defined array abstractions that en-
code problem-specific knowledge [87].

The Julia programming language does not suffer from this problem,
as the language has been co-designed with aJIT-compiler that generates
high-quality machine code. The performance of scalar, loop-based pro-
grams is typically on par with implementations in a low-level language
like C. As a result, the array operations themselves are also implemented

4.3. BACKGROUND: ARRAY PROGRAMMING IN JULIA 69

in Julia, and do not require a low-level language to achieve high perfor-
mance [28]. This makes it easier to contribute to the implementations of
array operations, be it as part of the Julia standard library or any of its
packages. This feature is also found in the high-level Impala language
part of the AnyDSL programming system, at the cost of requiring a
..... . . .DSL abstraction level to implement operations in and losing the ability
to easily implement low-level operations [92].

The availability of a JIT compiler also enables powerful, higher-order
abstractions that compose with arbitrary user code and separate the in-
tent of the developer from the actual execution. The idea of separating
the algorithm (what to compute) from the schedule (how and where to
compute) is not new, and a prominent feature of Halide which uses a
C++ DSL to allow programmers to write pipelines (image algorithms)
independently of the schedule and execution target [121, 94]. Halide
allows for automatic scheduling of pipelines, but most advanced users
will want to specify their own, since a programmer with deep knowledge
of the hardware can create an optimal schedule of the pipeline. The
Halide approach is declarative and focuses on stencils, which is unfamil-
iar to a developer used to high-level languages and their use of array
abstractions.

4.3 Background: Array Programming in Julia
Julia’s array abstractions focus on ease of use, expressiveness through
higher-order abstractions, and good performance by means of compiler
specialization [28]. This approach facilitates prototyping, but also makes
it possible to reuse application code outside of the prototyping phase.
Applications work with generically-typed arrays without any performance
penalty. In Chapter 5 we will illustrate how that enables portability
across array types, and consequently across execution environments, of-
fering flexibility that is similar to Halide.

Altogether, even though use of array abstractions is not a necessity in
Julia, they are commonly used due to the natural, concise representation
while being very versatile and capable of expressing a wide range of
computations. At the same time, the abstractions expose a great deal of
parallelism, and are therefore ideal candidates for parallel programming.
This will be discussed in Section 4.4.

70 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 a = [1 2; 3 4]
2 b = [3 4; 5 6]
3 c = [5 6; 7 8]
4
5 map(x->x+1, a)
6 map(+, a, b)
7 map((x,y,z)->x+y+z, a, b, c)
8
9 broadcast(+, a, 1)

10 broadcast(+, a, [-1; 1])

Listing 24: Example use of the map, broadcast and reduce abstractions.

4.3.1 Higher-Order Array Abstractions

We discuss two higher-order abstractions that are commonly used with
Julia arrays: map and broadcast. These are just two of many higher-order
abstractions that exist in the Julia standard library, including reduce,
accumulate, foldr and foldl, mapreduce, etc. Each of these abstractions
compose with user code that determines what is computed, while the
methods that implement these abstractions determine how and where
that computation will happen. The implementations can be further spe-
cialized on the type of the arguments, selecting an implementation that
maximizes performance or otherwise preserves the array type, e.g., to
prevent memory transfers from or to a heterogeneous computing device.

map Abstraction

At its core, map transforms collections of identical shape and size by
applying a function elementwise over the collections, as shown in List-
ing 24. The function should accept as many arguments as the amount
of containers passed to map.

The abstraction is a prime example of a higher-order abstraction.
The first argument to map is a function that defines the transformation.
It can be any type of function, including including user-defined and
anonymous functions. TheJIT compiler specializes the implementation
of map, which only deals with the semantics of the abstraction, with the
transformation function as specified by the user.

Furthermore, the underlying storage is implemented by a separate
container type. In the example from Listing 24 this is the standard Array
type, which is itself specialized on the standard element type Int. How-
ever, it is as easy to use nonstandard types for containers and elements.

4.3. BACKGROUND 71

This is a clear separation of concerns, facilitating reuse by limiting the
responsibility of each aspect of the overall computation.

broadcast Abstraction

The broadcast abstraction generalizes the behavior of map to contain-
ers of heterogeneous shapes by extruding dimensions accordingly. This
greatly improves use of the abstraction with objects of different shapes
and sizes. Broadcasted operations generally take the form b : RN → RM

where N is the input arity and M is the output arity. We define the
broadcast of this operation as:

broadcast(b,X1 . . .XN) = map(b,X1 . . .XN) = Y1 . . .YM

Here, arguments Xj are multidimensional arrays of arbitrary shape,4
subject to the constraint that each dimension of any argument must
either have the same length as that dimension in other arguments, or
must have length 1. Each Xj is equivalent to the corresponding Xj , but
where length-1 dimensions are “copied” along that dimension to match
its maximum length across all Xj , such that all Xj are of equal shape.
The function b is then mapped elementwise across all Xj , resulting in
the outputs Yi, each of which is the same shape as any Xj .5

For example, broadcasting b : R3 → R2 over an n ×m matrix A, a
scalar α, and an n-element vector a yields:

b.(A, α,a) =


b(A11, α, a1)1 . . . b(A1m, α, a1)1

...
b(An1, α, an)1 . . . b(Anm, α, an)1

 ,

b(A11, α, a1)2 . . . b(A1m, α, a1)2
...

b(An1, α, an)2 . . . b(Anm, α, an)2




(4.1)

As of Julia 1.0, broadcast is represented with a first-class data struc-
ture [9]. Broadcast expressions are lowered to instances of the Broadcasted
type, which represents a tree of a broadcast operations. These objects

4Note that scalars and single-element arrays are equivalent under this definition
of broadcast.

5Advanced broadcast implementations index directly into the Xj arguments to
perform b elementwise invocations (as is done in Equation 4.1) rather than explicitly
materialize the Xj arguments.

72 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

Source code Lowered to
f.(a) broadcast(f,a)

b .= f.(a) broadcast!(f,b,a)
f.(a .+ b) .∗ c broadcast(⟨a, b, c⟩ → f(a+ b) ∗ c,a,b, c)

Table 4.1: Lowering of different forms of broadcast syntax. The last
example illustrates fusion of elementwise operations.

are accessible to implementations of broadcast, and can be used to cus-
tomize how broadcast is computed depending on the arguments and out-
put types. For example, it allows for broadcast expressions on ranges
to be calculated eagerly, for custom array types to opt-out of broad-
cast fusion and evaluate each operation individually, and for splitting
broadcast expressions into chunks that can be computed in parallel.

4.3.2 Dot Expressions
To improve the usability of broadcast, so-called dot expressions can be
used in Julia to denote elementwise transformations [76]. The Julia
parser lowers this syntactic sugar to invocations of the broadcast func-
tion, as illustrated with some examples in Table 4.1. Elementwise assign-
ments call the broadcast! function, which performs in-place assignment
to avoid allocating an output container.

4.3.3 Broadcast Fusion
Assuming that a pair of broadcasted operations have compatible shapes
and are side-effect free, the broadcast of their composition generally
obeys the following relation:

g.(f.(X1 . . .XN)) = (g ◦ f).(X1 . . .XN) (4.2)

In programs containing broadcast operations, Equation 4.2 can be
exploited to perform broadcast fusion, a compiler-level optimization that
transforms compositions of broadcast calls into a single broadcast call.
This transformation is performed at theAST level, and further improves
the appeal of the broadcast abstraction [76].

Broadcast fusion imparts a couple of performance benefits. First, by
obviating the need to compute and store intermediate results, broad-
cast fusion reduces memory usage, temporary allocations, and kernel
invocations required to complete the computation. Second, broadcast
fusion allows the fused broadcast operation to be parallelized without

4.4. HETEROGENEOUS PROGRAMMING WITH ARRAYS 73

re-synchronization between intermediary broadcast operations [50, 83].
This property is useful for the purpose of aGPU implementation, and
can also be exploited to perform efficient automatic differentiation of
fused kernels as will be explained in Chapter 6.

4.4 Heterogeneous Programming with Arrays

Building on the array abstractions from the previous section, we provide
a framework for programming heterogeneous devices where it is possible
for application code to only deal with what needs to be computed, while
an underlying array type takes care of where the data is stored, and
how the computations are performed. At the same time, use of higher-
order functions make it possible to improve the abstractions’ flexibility
and compose with arbitrary user code. Before explaining how we imple-
mented these abstractions forCUDAGPUs, this section will describe
the necessary techniques with an illustrative HeterogeneousArray type.
It aims to demonstrate how the array abstraction level is a good fit for
targeting accelerator hardware, while keeping the library implementa-
tion generic enough to work with different kinds of applications.

4.4.1 Array Type Hierarchy

At its core, every array type starts with a parametric type definition that
subtypes the AbstractArray type. In the case of an array type that is
backed by actual device memory, as opposed to a so-called view that only
changes the behavior from an underlying array, the type would contain
a number of fields that provide handles to device memory. In Listing 25,
we define such a HeterogeneousArray type that contains a single field,
handle, to store a pointer to device memory. The constructor on line 9
accepts any array data as input, and uploads it to the device by using
an the to_device function that is provided by the illustrative device
back-end package DeviceBackend.jl. A counterpart function on line 13
implements conversion back to aCPU array, downloading from device
memory using the from_device function.

The AbstractArray type also contains two type parameters, T and N,
for respectively the type and dimensionality of the array. These type
parameters need to be filled in for any concrete instantiation of an ar-
ray, and can be used to dispatch to optimized method implementations
that depend on the value of these type parameters. Examples are an
optimized matrix-vector multiplication, or an implementation that calls
a C library that only provides implementations for C data types. In the

74 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 using DeviceBacked: to_device, from_device
2
3 struct HeterogeneousArray{T,N} <: AbstractArray{T,N}
4 # member field storing handle to device memory
5 handle::Ptr{T}
6
7 # constructor
8 HeterogeneousArray(data::AbstractArray{T,N}) where {T,N} =
9 new{T,N}(to_device(data))

10 end
11
12 Base.convert(::Type{Array}, array::HeterogeneousArray) =
13 from_device(array.handle)

Listing 25: Storage handling for a heterogeneous array type.

1 using DeviceBacked: to_device, from_device
2
3 function Base.setindex!(array::HeterogeneousArray, i::Integer, value)
4 to_device(array.handle, i, value)
5 return
6 end
7
8 function Base.getindex(array::HeterogeneousArray, i::Integer)
9 return from_device(array.handle, i)

10 end

Listing 26: Scalar indexing for a heterogeneous array type.

case of HeterogeneousArray, the actual values of these type parameters
are deduced by the constructor from the input data.

4.4.2 AbstractArray Interface

As part of the AbstractArray interface, custom array types should6 im-
plement certain functionality, such as the getindex and setindex! meth-
ods to fetch and to store scalar elements from the array. Examples of
these methods are defined in lines 3 and 8 of Listing 26 where we rely
on versions of the from_device and to_device functions of the device
back-end package to load from and store to device memory.

6Interfaces are currently not enforced by the compiler. Typically, the relevant
documentation provides a list of methods that must or may be implemented, and
what the semantics of these methods should be.

4.4. HETEROGENEOUS PROGRAMMING WITH ARRAYS 75

1 using DeviceBacked: @on_device
2
3 function LinearAlgebra.mul!(Y::HeterogeneousArray{T, N},
4 A::HeterogeneousArray{T, N},
5 B::HeterogeneousArray{T, N}) where {T, N}
6 @on_device begin
7 x = A[...] * B[...]
8 Y[...] = y
9 end

10 end

Listing 27: In-place multiplication for a heterogeneous array type.

These scalar access methods are useful because they provide com-
patibility of the array type with existing code that explicitly iterates
over the elements of arrays. For example, the “default” definition of
matrix multiplication for AbstractArrays in the Julia standard library,
which is designed for execution on a hostCPU, uses the textbook al-
gorithm with nested for loops that multiply and accumulate matrix ele-
ments. When that matrix multiplication is invoked on an array of type
HeterogeneousArray, it still computes the correct result, albeit it very
slowly: The nested loops is still executed on the host CPU, and every
element accessed in the array on the device is transferred individually
from the device to the host. This obviously is very slow, and defeats the
entire purpose of accelerator hardware. Still, it provides compatibility
with existing scalar code. Such code can then be incrementally ported
to use array abstractions, and the results can be verified at every step.

For an array type to be usable for engineering purposes, it has to
provide efficient versions of relevant array abstractions. As detailed
in Chapter 2, the design of the Julia programming language facilitates
such overloads. In Listing 27 we demonstrate how a custom array type
can implement a generic matrix-matrix multiplication that replaces the
aforementioned generic, scalar version of the standard library. The ex-
ample uses the @on_device macro provided by the DeviceBackend.jl pack-
age to mark code that should be executed on the device. Note that the
implementation is still fully generic. It can be used with any element
type (e.g., plain scalars, or complex structures such as a Dual number
type from the DualNumbers.jl package) as long as multiplication and
addition are defined for the type. When this method is invoked, the run-
time compiler specializes the code on the actual run-time arguments,
i.e., concrete instances of HeterogeneousArray with values for the T and
N type parameters, and on the execution context, i.e., @on_device.

76 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 using DeviceBacked: @on_device
2
3 function Base.copyto!(dest::HeterogeneousArray, op::Broadcasted)
4 @on_device begin
5 I = CartesianIndex(dest)
6 dest[I] = op[I]
7 end
8 end

Listing 28: Implementation of the broadcast interface for a heteroge-
neous array type.

The illustrative operations on lines 7 and 8 are syntactic sugar un-
derneath of which implementations of getindex and setindex! are used.
The examples from Listing 26 implemented these methods for the pur-
pose of accessing elements of the heterogeneous array from the host.
But in this context, these operations are executing on the device al-
ready. This obviates the transfers of the elements to and from the host
processor. In the @on_device context, the from_device and to_device
should be specialized to perform direct accesses of device memory, and
the computations should be performed directly on the device.

There are several possibilities to specialize methods on their execu-
tion context. With Cassette.jl, contextual dispatch could be used to
extend Julia’s method dispatch and take the execution context into ac-
count [124]. CUDAnative.jl takes a simpler, type-based approach by
converting objects such as arrays to a device equivalent when pass-
ing from the host to the device, and implementing separate getindex
and setindex! methods for these device arrays. Alternatively, a type
parameter that encodes the execution context could be added to the
HeterogeneousArray type to similarly dispatch to different methods based
on the value of this parameter.

4.4.3 broadcast Abstraction

Abstractions such as matrix multiplication from Listing 27 as imple-
mented for a heterogeneous array type define both what is executed,
where, and how. By contrast, higher-order abstractions like broadcast
from Section 4.3.1 make the user responsible for specifying only what is
computed. Such a separation of concerns will facilitate greater reuse of
code, as Chapter 5 will discuss.

4.5. CUARRAYS.JL 77

To support broadcast operations, Listing 28 provides an implemen-
tation of the copyto! function for HeterogeneousArray when it is passed
a Broadcasted tree. This method is responsible for executing a flattened
representation of broadcast expressions in the context of a certain array
type, and is part of the interface that makes up the broadcast interface.
Both the broadcast expression and destination array are indexed with a
CartesianIndex, a tuple of integers that represents a multidimensional
index into a container. In the case of our HeterogeneousArray type, we
make sure this operation happens on the device by using the @on_device
macro. Other required definitions concern the so-called broadcast style,
for broadcasting between objects of different types and determine how
to allocate memory for out-of-place broadcasting.

The full extent of the broadcast interface is shown in Table 4.2. It
shows that this interface is fairly lightweight, only requiring two method
definitions to make objects broadcastable. By doing so, generic broad-
cast functionality that relies on scalar iteration is reused. The broadcast
interface exposes appropriate hooks to further customize this functional-
ity, e.g., to avoid scalar iteration with heterogeneous devices by provid-
ing an implementation of copyto! as in Listing 28. These definitions do
not need to be specific to the concrete object that is being broadcasted,
but can be implemented for any supertype in order to share functionality
and reduce the required number of definitions.

4.5 CuArrays.jl

The CuArrays.jl package7 defines a CuArray type that provides an array
programming abstraction forCUDAGPUs [78]. It implements common
array operations, including Julia’s higher-order abstractions from Sec-
tion 4.3, a memory manager to amortize the cost of allocating memory
and track their uses, and various high-level utilities that improve the
end-user programming experience.

4.5.1 Array Operations
CuArrays.jl provides implementations of many common array operations
for NVIDIAGPUs. Where possible, these implementations call out to
existing, vendor-provided libraries such as cuBLAS or cuDNN. These
libraries are mature and optimized for each hardware generation. Other
operations, such as the higher-order abstractions from Section 4.3 are
implemented using the CUDAnative.jl GPU compiler from Chapter 3.

7Available at https://github.com/JuliaGPU/CuArrays.jl

https://github.com/JuliaGPU/CuArrays.jl

78 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

Function signature Description
BroadcastStyle(object::Type) Broadcasting behavior.
similar(::Broadcasted, elem::Type) Allocation of output containers.

Optional methods
BroadcastStyle(::Style1, ::Style2) Precedence rules for styles.
axes(x) Declaration of the indices of x.
broadcastable(x) Convert to an object that has

axes and supports indexing.

Bypassing default machinery
copy(::Broadcasted) Custom out-of-place broadcast.
copyto!(dest, ::Broadcasted) Custom in-place broadcast!.
broadcasted(f, args...) Override the default behavior

within a fused expression.
instantiate(::Broadcasted) Override the computation of

the lazy broadcast’s axes.

Table 4.2: Methods that make up the public broadcast interface and
can be implemented to support or customize the behavior of broadcast
operations.

4.5. CUARRAYS.JL 79

Availability of a GPU compiler like CUDAnative.jl makes it possible
to extend the applicability of many of these operations. For example,
matrix multiplication as implemented by cuBLAS only supports certain
real and complex element types, and is limited to specific dense memory
layouts. CuArrays.jl provides a fallback implementation8 of matrix mul-
tiplication, shown in Listing 29. Since this implementation is generically
typed, it is applicable to all element types that define multiplication and
addition, and supports every memory layout with well-defined indexing
semantics. This greatly improve usability of the array type in regard
to multiplying matrices, while still dispatching to the high-performance
cuBLAS implementations whenever possible.

As a realistic example, consider automatic differentiaton with Forward-
Diff.jl [127]. This package makes it possible to differentiate arbitrary
Julia code by replacing scalar inputs with dual numbers. As illustrated
in Listing 3, these numbers encapsulate both the original scalar input
as well as a number of epsilon components. In the case of automatic
differentiation, these epsilon components represent the partial deriva-
tives with respect to that input, and operations on these dual numbers
will apply the original operation to the scalar component as well as the
derivative of the operation to each of the epsilon components.

If the code under differentiation contains a matrix multiplication, or
any other operation that would have dispatched to a vendor-provided
library, it is not possible to reuse that implementation because it most
likely does not support the dual number arguments as represented by
instances of the Dual type from ForwardDiff.jl. To support these and
other uses cases9 where the element type is not supported by the vendor-
provided libraries, we provide generic implementations like the matrix-
matrix multiplication in Listing 29 that support any input type by rely-
ing on specialization andJIT compilation.

8The implementation is naive, and does not come close to the performance of
cuBLAS. However, it is only intended to be used with element types that are not
supported by cuBLAS. These types are typically complex or large (e.g., Dual numbers,
large or high-precision scalars, user-defined structures, …), resulting in performance
that is often bound by bandwidth or by the cost of the scalar operations.

9Other examples include the use of high-accuracy types such as Double-
Floats.jl [136], intervals for bounded computations with IntervalArithmetic.jl [134],
or simple scalar types that are not covered by the fairly limited set of real number
types that are typically supported by the NVIDIA vendor libraries.

80 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 function generic_matmatmul!(C::AbstractVecOrMat{R},
2 A::AbstractVecOrMat{T},
3 B::AbstractVecOrMat{S}) where {T,S,R}
4 @assert size(A,2) != size(B,1)
5 @assert size(C,1) != size(A,1) || size(C,2) != size(B,2)
6
7 function kernel(C, A, B)
8 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
9 j = (blockIdx().y-1) * blockDim().y + threadIdx().y

10
11 if i <= size(A,1) && j <= size(B,2)
12 z2 = zero(A[i, 1]*B[1, j] + A[i, 1]*B[1, j])
13 Ctmp = convert(promote_type(R, typeof(z2)), z2)
14 for k in 1:size(A,2)
15 Ctmp += A[i, k]*B[k, j]
16 end
17 C[i,j] = Ctmp
18 end
19
20 return
21 end
22
23 numthreads, numblocks = ... # heuristic to maximize occupancy
24 @cuda threads=numthreads blocks=numblocks kernel(C, A, B)
25
26 return C
27 end

Listing 29: Generic implementation of matrix-matrix multiplication
from CuArrays.jl.

4.5. CUARRAYS.JL 81

4.5.2 Higher-Order Abstractions

TheGPU compiler from Chapter 3 is essential to implement the higher-
order array abstractions from Section 4.3.1. These abstractions are es-
pecially important for GPU computing, where naive or non-expert im-
plementations often do not perform well. For example, reduce on the
..... . . .CPU can be implemented reasonably efficiently with a plain for loop
that accumulates values. To get any performance on the GPU, we need
a parallel reduction that effectively uses the memory hierarchy. We pro-
vide such an implementation in CuArrays.jl, using a tree-based reduction
based on shared memory and shuffle instructions [66, 98].

We further illustrate this point using a simple vector addition. List-
ing 30 shows how to compute an element-wise addition of two CuArray
GPU arrays using CUDAnative.jl. At this abstraction level, users need
to provide a scalar kernel function that is executed according to the
SPMD (Single Program, Multiple Data) programming model. Index-
ing semantics need to match the data as well as the limitations of the
hardware, while taking into account the occupancy that results from
the requested launch configuration in combination with the hardware
resource usage of the kernel (e.g., using the tools from Section 3.6.3).
In contrast, Listing 31 performs this operation using array operations
from CuArrays.jl. Specifically, we use dot syntax to broadcast the +
function across the input arrays. This completely avoids the need to
provide a SPMD kernel. The example demonstrates how users can use
the CuArray type with powerful, higher-order abstractions that obviate
manual kernel programming. However, when flexibility is required, it
is still perfectly possible to go deeper and use CUDAnative.jl to create
custom SPMD kernels as with Listing 30. Both approaches can perfectly
coexist in a single application.

Under the hood, the implementation of broadcast for CuArray trans-
forms the scalar transformation to a valid SPMD kernel. Listing 32 shows
a part of that implementation from the CuArrays.jl package.10 As ex-
plained in Section 4.4.3, the copyto! method is responsible for execut-
ing a broadcast expression in the context of a specific array type, here
CuArray. The implementation defines an anonymous kernel on line 6,
which calculates array indices using GPU intrinsics in accordance with
the dimension-matching semantics of the broadcasting abstraction. The
kernel is subsequently executed in parallel on line 14 using CUDA-
native.jl. This is similar to the low-level use of CUDAnative.jl as shown
in Listing 30.

10Part of this implementation is from the GPUArrays.jl package, which contains
vendor-neutral GPU implementations of common abstractions.

82 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

1 using CuArrays
2
3 a = CuArray(rand(2,2))
4 b = CuArray(rand(2,2))
5 c = similar(a)
6
7
8 using CUDAnative
9

10 function vadd(c::CuArray, a::CuArray, b::CuArray)
11 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
12 c[i] = a[i] + b[i]
13 return
14 end
15
16 numthreads, numblocks = ... # heuristic to maximize occupancy
17 @cuda threads=numthreads blocks=numblocks vadd(c, a, b)

Listing 30: Low-level addition of GPU arrays using kernel programming
interfaces from CUDAnative.jl.

1 using CuArrays
2
3 a = CuArray(rand(2,2))
4 b = CuArray(rand(2,2))
5 c = similar(a)
6
7 c .= a .+ b

Listing 31: High-level alternative to Listing 30, adding two GPU arrays
using broadcast from CuArrays.jl.

4.5. CUARRAYS.JL 83

1 using CUDAnative
2
3 function Base.copyto!(dest::CuArray, bc::Broadcasted)
4 op = Broadcast.preprocess(op)
5
6 function kernel(dest, op::Broadcasted)
7 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
8 I = CartesianIndex(i)
9 dest[I] = op[I]

10 return
11 end
12
13 numthreads, numblocks = ... # heuristic to maximize occupancy
14 @cuda threads=numthreads blocks=numblocks kernel(dest, op)
15
16 return dest
17 end

Listing 32: Low-level implementation of one of the methods that imple-
ment the broadcast abstraction, taken from CuArrays.jl.

Finally, high-level abstractions can also improve performance. As
mentioned in Section 4.3.2, the Julia parser syntactically fuses multiple
broadcast expressions together, resulting in fewer calls to broadcast. In
the context of GPU programming, the advantages of broadcast fusion
are profound: fewer kernel launches are required, memory allocations
for temporary outputs can be avoided, and temporaries live in registers
and do not have to be loaded from global memory.

4.5.3 Memory Management

The CuArrays.jl package also features a memory pool allocator to im-
prove performance and usability of the underlyingCUDA allocator. The
CUDAAPI wrapper from Section 3.5 already enhanced the CUDA APIs
by supporting garbage-collected memory and integration with the Julia
GC (Garbage Collector). However, the Julia garbage collector is cur-
rently not extensible, and its heuristics do not consider the memory
pressure on external hardware. As a result,GPU memory is not col-
lected any faster when pressure is high, with frequent out-of-memory
exceptions as a result.

84 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

CuArrays.jl provides a memory allocator that layers on top of the
existing allocation routines in CUDAdrv.jl. When allocating new mem-
ory, we catch out-of-memory exceptions and trigger a sweep of the Julia
garbage collector. This is expected to release unused buffers. Further-
more, allocations are taken from and released back into pools of equally
sized buffers. This makes it possible to quickly re-allocate without the
need to call into the slow CUDA allocator. These pools can be purged
at any time, e.g., when an allocation is required that cannot be fulfilled
by the device and cannot be allocated from the designated pool either.

The allocator has been tuned on memory-intensiveML models from
the Flux.jl library. Compared to the reference allocator where all stale
objects are aggressively collected and released with every out-of-memory
situation, a convolutional image classifier for the MNIST database of
handwritten digits performs 60% fewer actual allocations (56% fewer al-
located bytes) while spending significantly fewer cycles on GC operations
(1.22% instead of 4.23% of total application run time).

The design of this pooling memory allocator is similar to, e.g., Py-
Torch’s THCCachingAllocator or TensorFlow’s PoolAllocator. One im-
provement for the purpose of interactive use, a common scenario with
Julia, is to keep track of each pool’s usage history. When pools are un-
derused, i.e., when it contains more buffers then are concurrently in use
at any point in recent time, the pool is shrunk to reduce total device
memory usage. This improves collaborative use of a single GPU with
multiple interactive users as it prevents individual users from monopo-
lizing the device’s memory.

4.5.4 Low-level Flexibility

Although this chapter presents an array programming interface that is
designed to raise the abstraction level, it still allows for low-level flexi-
bility as enabled by the underlyingGPUJIT compiler from Chapter 3.
To illustrate this point, Listing 33 demonstrates how to compute the
base-2 exponential of every element in an array, using array abstrac-
tions from Section 4.3.1. The first approach uses the broadcast abstrac-
tion via dot syntax, resulting in highly-readable code that is portable
across array implementations. The second approach uses aPTX-specific
instruction for efficient GPU execution, and demonstrates how the high-
level map abstraction can be used together with the low-level @asmcall
macro from LLVM.jl for inline assembly in Julia.

4.5. CUARRAYS.JL 85

1 # allocate data
2 julia> using CuArrays
3 julia> A = CuArray{Float32}([1, 2, 3])
4 3-element CuArray{Float32,1}:
5 1.0 2.0 3.0
6
7 # first approach: broadcast with dot syntax
8 julia> 2f0 .^ A
9 3-element CuArray{Float32,1}:

10 2.0 4.0 8.0
11
12 # second approach: map with inline asembly
13 julia> map(a -> @asmcall("ex2.approx.f32 \$0, \$1;", "=f,f",
14 Float32, Tuple{Float32}, a),
15 A)
16 3-element CuArray{Float32,1}:
17 2.0 4.0 8.0

Listing 33: Use of high-level array abstractions to compute the base-2
exponential of every element in an array.

The ability to use high-level abstractions with low-level code is espe-
cially useful in combination with Julia’s multiple dispatch. As explained
in Section 2.3, this kind of dispatch provides the flexibility to selectively
override methods that would be out of reach with single dispatch se-
mantics. A common use-case is to initially develop with only very high-
level array operations, then determine where performance is lacking, and
subsequently provide optimized method implementations regardless of
where the original definition came from (e.g., in a third party library,
or as part of the Julia standard library). Crucially, these methods need
not to be incompatible with the original definition and its use cases.
For example, the PTX-specific invocation of map in Listing 33 should
be confined to a method that can only be dispatched to in the context
ofCUDA arrays, either by specifying that the input should be of type
CuArray, or by using contextual dispatch as explained in Section 4.4.

86 CHAPTER 4. HIGH-LEVEL ARRAY PROGRAMMING

Chapter 5
Array Programming for
Portability

Array programming as introduced in Chapter 4 makes it possible for
non-expert programmers to useGPUs and accelerate their applications.
The approach has other advantages too: By decoupling the application
from the underlying array implementation, we can improve portability
and seamlessly execute applications on different platforms and comput-
ing environments.

This chapter will demonstrate the portability of array programming
in Julia with the engineering applications from Chapter 4. We will eval-
uate these applications across several array types, including CuArrays.jl
for GPU programming and DistributedArrays.jl for distributed execu-
tion, and assess their performance.

The DistributedArrays.jl package as described in this chapter is pre-
existing software that was not developed as part of the work presented
in this dissertation. Improvements to this and other packages for the
purpose of GPU execution, as well as the experiments presented in this
chapter, were developed by myself and Valentin Churavy of the Mas-
sachusetts Institute of Technology.

In this chapter, I contribute a scientific analysis of the porta-
bility that is enabled by array programming. I also demon-
strate how careful implementation of the underlying infras-
tructure makes it possible to compose functionality, for the
purpose of performance or productivity. These contributions
have been published in a peer-reviewed journal.1

1Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De Sutter. “Rapid
Software Prototyping for Heterogeneous and Distributed Platforms”. In: Advances in
Engineering Software (AES) (2019). doi: 10.1016/j.advengsoft.2019.02.002.

https://doi.org/10.1016/j.advengsoft.2019.02.002

88 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

5.1 Background and Related Work:
Portable Distributed Computing

Distributed computing is a field of computer science that deals with
distributed systems, running so-called distributed programs on groups
of autonomous computational entities or nodes. The main reason to
use such a system is for their greater computational power compared to
individual nodes. These entities are typically connected over a network,
and use some form of message passing to communicate with each other.

Programming distributed systems is typically done in a low-level
language like C or C++, using interfaces like as MPI (Message Passing
Interface) [106], Legion [8], and UPC++ [6]. More convenient inter-
faces like OpenMP [49] or Cilk [33] are incompatible due to their re-
liance on shared memory. There also exist special-purpose HPC (High-
Performance Computing) languages such as IBM’s X10 [40], Chapel [39],
and Fortress [2], which were created with any number of good ideas but
have failed to attract a substantial user base outside of the commu-
nity that originally developed it. Other approaches make use of large
and complicated libraries like Trilinos [69], PetSC [7], and Kokkos [36].
These have been developed to facilitate the reuse of common numerical
infrastructure and have found a fervent following in the HPC commu-
nity. They are known to achieve excellent performance in cluster en-
vironments, and are well suited for performance engineers comfortable
with C/C++ and distributed programming. However, this also makes
them unsuited for prototyping or other exploratory development.

Furthermore, the abstractions of these frameworks tend to break
down when combining the distributed nature of systems with nonstan-
dard computational entities, such asGPUs or other hardware acceler-
ators. Effective use of MPI requires a specific implementation suited
for use withCUDA [84], X10 requires users to map data structures to
GPU memory explicitly [48], etc. Where other libraries, like Legion and
UPC++, do compose together with a GPU software stack like CUDA,
they require the programmer be proficient in both distributed program-
ming practices, GPU development techniques, and the cross-over of both
to optimize GPU memory transfers across individual nodes.

5.2. DISTRIBUTEDARRAYS.JL 89

1 function Base.map!(f, dest::DArray, data)
2 @sync for p in procs(out)
3 @async remotecall_wait(p, f, dest, data) do f, dest, data
4 local_dest = localpart(dest)
5 map!(f, local_output, makelocal(data, localindices(dest)...))
6 end
7 end
8 end

Listing 34: Low-level implementation of in-place map taken from
DistributedArrays.jl.

5.2 DistributedArrays.jl

The DistributedArrays.jl package2 builds on Julia’s distributed comput-
ing infrastructure to provide a Global Array-like interface [112, 80]. The
package focuses on programmer productivity by using a high-level lan-
guage and by automatically distributing data and operations without
requiring any user control with respect to partitioning, data distribu-
tion, etc. It provides a DArray data structure that distributes an array
across a set of processes, where each process holds a chunk of the total
array. The memory is globally addressable, and RPCs (Remote Pro-
cedure Calls) are issued automatically when accessing memory that is
not local to the process. This makes it possible to support scalar in-
dexing for code compatibility reasons, while optimized implementations
of operations are aware of the distribution of memory and can avoid
communication overhead.

The type signature of DArray consists of three type parameters: T
and N from the AbstractArray interface for respectively the element type
and dimensionality, and A for the underlying local array type. The lo-
cal array type parameter enables a great amount of flexibility, as it
allows DArray to be mostly agnostic to the underlying array type. This
again allows to separate concerns, where the DArray type manages com-
munication while the underlying array A is responsible for the storage,
computation, etc. Section 5.3.3 will show how this patterns makes it
possible to compose array types that, like DArray, wrap other arrays.

Listing 34 is an example of an implementation of a high-level ab-
straction for distributed arrays in DistributedArrays.jl. It follows the
owner-computes rule by which each processor performs computations
on the data it owns. The example implements an in-place map through

2Available at https://github.com/JuliaParallel/DistributedArrays.jl

https://github.com/JuliaParallel/DistributedArrays.jl

90 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

1 # prepare a parallel computing environment
2 using Distributed
3 addprocs(2)
4
5 using DistributedArrays
6
7 a = distribute(rand(2,2))
8 b = similar(a)
9

10 map!(sin, b, a)

Listing 35: High-level use of the map! abstraction with distributed arrays
from DistributedArrays.jl.

a series of RPCs, predominantly operating on local memory and avoid-
ing unnecessary communication to other processes. The master process
orchestrates the communication between workers and the actual work is
delegated to operations on local data. The example demonstrates the
aforementioned separation of concerns: The code of Listing 34 only deals
with distributing the map operation, and defers to the underlying array
type for the actual implementation of the abstraction.

The example calls remotecall_wait from the Julia distributed in-
frastructure to invoke an anonymous function on process p to execute
the do ... end block that follows. The worker process then accesses
the localpart of the target array and localizes through makelocal those
parts of the input data array that are required to compute the local part
of the map. If necessary makelocal fetches and copies data from other
workers, but if data is already locally available this copy is avoided. The
call to remotecall_wait is a blocking RPC and is wrapped in an @async
block, which starts a lightweight task. Tasks are used to prevent the pro-
cesses, especially the master, from blocking on a call since otherwise no
progress could be made and no other RPCs could be issued. Finally, the
@sync block waits for all enclosed tasks to make sure the computation is
finished when returning from the map! function.

The distributed computing abstractions as used in Listing 34 are
defined in the Julia standard library. They use the ClusterManager
interface for launching worker processes on distributed systems. The
standard library implements this interface for local processes and for
networked systems that expose the SSH (Secure Shell) protocol. Ex-
ternal packages can be used to work with managed clusters, such as
ClusterManagers.jl that implements a ClusterManager subtype for the
Slurm workload manager [156], the Portable Batch System [67], and

5.3. EVALUATION 91

others. For environments that rely on theMPI [106], MPIManager from
MPI.jl can be used to communicate with processes over an optimized
communication fabric such as InfiniBand [97]. The design of this infras-
tructure enables distributed code that works with distributed processes,
such as DistributedArrays.jl, to be agnostic of the underlying processes
and how they communicate.

The implementation as shown in Listing 34 is written by specialists
that know how the DistributedArrays.jl package is structured, and how
to execute code efficiently in a distributed setting. This complexity is
completely hidden from the end user: Listing 35 shows how to use the
map! abstraction from Listing 34 on a newly allocated DArray. This does
not differ from use of the abstraction with any other array type. The
only code specific to distributed computing deals with launching local
processes by calling addprocs on line 3.

5.3 Evaluation
This section discusses how the examples from Section 4.1 and other
codes can be ported to other platforms and environments by using dif-
ferent array types. We use the Array type as provided by the Julia
standard library, CuArray from Section 4.5 and the DistributedArray
type described in Section 5.2.

Section 5.3.1 discusses the portability of standalone applications with
respect to different array implementations for different heterogeneous
platforms. Section 5.3.2 focuses on libraries that provide domain-specific
functionality using array abstractions, for use in standalone applications
and/or in compositions with other libraries. Such libraries should be
generic with respect to array types not to hinder the portability of the
applications or other domain libraries in which and with which they are
used. Finally, Section 5.3.3 analyzes the portability and composability
of libraries that define new array types and/or extend existing array
abstractions.

5.3.1 Application Portability
Array-based application code that does not rely on library functional-
ity, such as the example from Listing 20, can be ported trivially. It
suffices to use an appropriate array type by changing the array alloca-
tions to use a different constructor, for example, CuArray(...) instead
of Array(...). Operations on these arrays then dispatch to respective
implementations in the corresponding array package. If that package
does not provide certain operations, fallback methods from the Julia

92 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

standard library are used. For example, when passing a CuArray to
the domeigen function from Listing 20, the call to rand! dispatches to
an optimized implementation in CuArrays.jl that uses the cuRAND li-
brary. Similarly, the multiplication on line 11 is lowered to a call to
mul!. Several implementations of mul! are provided in CuArrays.jl,
using the cuBLAS library when possible but falling-back to a generic
matrix-matrix multiplication when required for, e.g., element types that
are not supported by cuBLAS. This implementation is written in Julia,
and uses CUDAnative.jl to compile code for theGPU and to execute it
on the GPU.

In the case of array types that support computations with user code,
we can also use code that is built around the higher-order array ab-
stractions from Section 4.3.1. These abstractions compose with user
code, and require the ability to generate code for the hardware that
is targeted by the array type. For example, we can take the example
from Listing 35 and change the call to distribute to create a CuArray
instead. The CuArrays.jl package uses CUDAnative.jl to generate code
for NVIDIA GPUs. Similarly, we can take the example from Listing 31
and execute it with arrays of type DArray{Array}, which would result
in distributed execution on theCPU. DArray itself does not execute the
user code but defers to the inner Array, which uses the Julia compiler
to generate code for the CPU.

Application code can also perform scalar iterations over array ele-
ments, either because the application code is written that way or be-
cause (standard) library operations used in the application code are
implemented as such. As explained in Section 4.4, this type of itera-
tion defeats the purpose of heterogeneous programming as it cannot be
implemented efficiently. Still, packages like CuArrays.jl and Distributed-
Arrays.jl support this type of iteration because it greatly simplifies the
effort of porting code. Initially, one can run the application on heteroge-
neous hardware without any change to the code, to verify the functional
correctness of the implementation. Subsequently, performance can be
improved by reimplementing methods that rely on scalar iteration us-
ing array abstractions that can be executed efficiently on heterogeneous
hardware. Identifying the methods that need to be reimplemented is
facilitated byAPI calls that disallows scalar iteration. For example,
both CuArrays.jl and DistributedArrays.jl provide a configuration value
allowscalar that, when set to false, triggers errors upon use of ineffi-
cient scalar functionality.

Typical applications also contain multiple allocation sites. For ex-
ample, the domeigen function from Listing 20 not only takes an array
as argument, but also allocates an output container for the resulting

5.3. EVALUATION 93

eigenvector. To avoid hard-coding an array type, Julia provides func-
tions such as similar to allocate new containers based on existing ones.
These functions make it possible to write generic code that is indepen-
dent from the chosen array type. The Julia standard library is built
on top of these generic programming approaches, and rapid prototyping
engineers can also use it, to facilitate reuse with different array types.

In summary, during prototyping, application code can be written
independently from the underlying array types. Porting the code to
different types optimized for different types of heterogeneous hardware
during the prototyping or afterwards requires minimal code changes, and
only serves to improve performance.

5.3.2 Library Portability

When applications use code from libraries, complexity is hidden behind
opaque function calls whose implementations are outside immediate con-
trol of the application developer. These implementations can be com-
plex, might themselves depend on auxiliary libraries, and should not
have to be understood by the application developer in order to port
application code to another platform.

Library code that works with arrays behaves similarly to application
code as described in Section 5.3.1. As long as the library only uses
functionality mandated by or implemented for AbstractArray, and allo-
cates new containers using generic functions like similar, it is possible
to reuse the library code with different array types.

However, where application code is often untyped, library code typi-
cally specifies types for function arguments [158]. For code to be portable,
i.e., reusable with different array types, these function signatures should
use abstract array types such as AbstractArray or AbstractSparseVector
and not their concreteCPU instantiations such as Array or SparseVector.

This requirement poses no problem in practice, as Julia developers
in general, and library developers in particular, are not unfamiliar with
such patterns of using abstract types to achieve generic array program.
Those patterns are in fact recurring elements in examples, documenta-
tion, and the standard library. Furthermore, many common operations
on arrays return wrapper objects, for the purpose of lazy evaluation or to
avoid allocations. Those objects require the code to be generic in order
to benefit from said optimizations. For example, transposing a matrix
results in an array of type Transpose, slicing produces a SubArray, etc.
As a result, most library code is already type-generic and should be
reusable in the context of heterogeneous array programming.

94 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

We conclude that the necessary technical support and developer
culture are available and even convenient to achieve portability when
domain-specific libraries are developed and used.

Use of ForwardDiff.jl

As a concrete library example, consider the ForwardDiff.jl package. It
implements methods to compute different kinds of derivatives of ar-
bitrary user-defined computations on arrays and their elements [127].
For example, in theML example from Listing 21 the gradient and
derivative functions are used to differentiate the loss function of a model
for use by a gradient descent optimization algorithm. The ForwardDiff.jl
package is an example of a high-quality, type-generic library. Simply
changing the type of the arrays as passed to the derivatives makes the
example from Listing 21 work on, e.g., aGPU, without requiring any
other changes to either the code in Listing 21 or the underlying library.

However, the performance of the standard implementation of the
ForwardDiff.jl package was not optimal when used with heterogeneous
array types. To identify functionality that needs to be optimized, we dis-
abled scalar iteration as described in Section 5.3.1. This revealed that
certain methods of the ForwardDiff.seed! function were implemented
using scalar for loops, one of which is shown in Listing 36. By reimple-
menting those methods using array abstractions as shown in Listing 37
they are better suited for execution on, e.g., a GPU. In this case, the
replacement uses a broadcast expression as a substitute for the scalar for
loop. The replacement code is not more complex, and performs almost
identical to the original scalar implementation.3

When the need to redefine a library function to obtain higher perfor-
mance in a specific application arises, either during or after the rapid-
prototyping phase, the redefinition does not necessarily need to happen
in the library itself. It can also be done in the application, by pre-
fixing the function name with the contained module. For example, to
implement the replacement of Listing 37 in an application rather than
in the ForwardDiff.jl library, it suffices to write it down as function
ForwardDiff.seed! ... end. When a replacement definition in an appli-
cation has exactly the same signature as the original definition in the
library, the replacement overrides the library version.

3The only exception is when using small arrays, where time to allocate an array
view as part of the broadcast invocation is significant. Compiler improvements with
respect to the garbage collector are expected to improve this: https://github.com/
JuliaLang/julia/issues/14955

https://github.com/JuliaLang/julia/issues/14955
https://github.com/JuliaLang/julia/issues/14955

5.3. EVALUATION 95

1 # original, scalar implementation
2 function seed!(duals::AbstractArray{Dual{T,V,N}}, x,
3 seeds::NTuple{N,Partials{N,V}}) where {T,V,N}
4 for i in 1:N
5 duals[i] = Dual{T,V,N}(x[i], seeds[i])
6 end
7 return duals
8 end

Listing 36: Scalar implementation of the seed! function in Forward-
Diff.jl.

1 # replacement broadcasting version
2 function seed!(duals::AbstractArray{Dual{T,V,N}}, x,
3 seeds::NTuple{N,Partials{N,V}}) where {T,V,N}
4 duals[1:N] .= Dual{T,V,N}.(x[1:N], seeds[1:N])
5 return duals
6 end

Listing 37: Reimplementation of the seed! function from ForwardDiff.jl
using array abstractions.

This capability can be very useful during rapid prototyping or per-
formance optimization: it allows the engineer to overcome deficiencies in
third-party libraries without requiring the immediate help of the owners
of those libraries and without having to build and then later maintain
custom versions of those libraries. The effects of these additional method
definitions are global, and can be used to influence functionality deep
down the library as opposed to only functions that are called directly.

Furthermore, the original definition in the library can easily be kept
available for the purpose of verifying the replacement implementation.
It suffices to use a dispatch signature that is limited to the heterogeneous
array type of choice to avoid that the original definition is overridden.
For example, by changing the method signature in Listing 37 to use
CuArray instead of AbstractArray for the first argument, the broadcast-
ing version would only be used for GPU arrays, and the known-good
library implementation remains available for use with Array objects to
verify semantic equivalence of the original and replacement definitions.

We conclude that even in the case when libraries are not fully portable
with respect to array types and abstractions, convenient techniques are
available to a user of the library to resolve the portability issues without
unnecessarily delaying or complicating the prototyping.

96 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

5.3.3 Array Infrastructure Portability

The previous examples have used arrays in a fairly straightforward man-
ner: User code instantiates a concrete subtype of the AbstractArray type
to express where data is stored, array abstractions are used to describe
what is going to be computed, and multiple dispatch is the core mecha-
nism to influence how computation happens. This section demonstrates
how this separation of concerns makes it possible to compose multiple
array types, and enable reuse of array infrastructure.

Kronecker Products on the GPU

The example from Listing 22 uses a custom array type for efficiently
computing the Kronecker product of two matrices, and provides an opti-
mized implementation of the norm function computing the matrix norm
using properties of the Kronecker product to improve performance. The
Kronecker array type is generically typed, and only requires that the
two input matrices should be part of the AbstractArray type hierarchy.
No so-called glue code is required for the Kronecker type to work with
concrete array types.

For example, we can create objects of type Kronecker{CuArray} by
calling the Kronecker constructor with inputs of type CuArray. The re-
sulting object can be used as if it were a generic array, with the Kronecker
type influencing what is computed, while the CuArray type defines how
and where the computation happens.

With only the getindex function for scalar indexing defined, array op-
erations with objects of type Kronecker{...} dispatch to generic imple-
mentations as described in Section 4.4. However, any optimized method
that calls functions on the underlying containers compiles to special-
ized code that uses functionality optimized for the contained array type.
For example, with a Kronecker product of CuArrays and the optimized
but still generically-typed implementation of the matrix norm from List-
ing 22, calls to the norm function result in an execution that combines
the properties of the Kronecker product that allow for an efficient cal-
culation of the norm with a well-optimizedGPU implementation of the
Euclidean norm that is available in the CuArrays.jl package and that
in turn invokes the cuBLAS library. This powerful example illustrates
how multiple array types, each dealing with separate concerns, seam-
lessly compose together to form a high-performance interface that can
still be used generically.

Ideally, it should also be possible to use the broadcast abstraction
from Section 4.3 in combination with custom array types. However,

5.3. EVALUATION 97

currently that does not work out of the box. One problem is the imple-
mentation of the type hierarchy in relation to broadcasting when wrap-
pers are combined. For example, Kronecker{CuArray} is a subtype of
AbstractArray, but not of CuArray. In the current language implemen-
tation, the compiler’s use of available methods optimized for CuArray
to specialize code depends on the presence of certain artifacts in the
Kronecker class method implementations, such as whether or not those
(by accident) defer to the inner CuArray. That dependency on the occur-
rence of those artifacts should be avoided, as it violates the separation of
concerns and limits composibility and performance portability in ways
a non-expert programmer cannot easily handle.

We expect this situation to improve in the future, since heavy use
of array wrapper types is relatively new, and the current broadcast in-
frastructure has been designed as recently as Julia 1.0. For now, array
packages such as CuArrays.jl and DistributedArrays.jl provide the nec-
essary definitions for common array wrappers, such as the ones from the
Julia standard library, to work as expected. We have since generalized
these definitions into a dedicated package,4 for use by any array type
that needs to customize the behavior of wrapped arrays.

Distributed GPU Arrays

Where the previous section combines array types that have separate
responsibilities, we can also compose types that involve similar concerns.
For example, both the CuArrays.jl and DistributedArrays.jl packages
define array types that define where data is stored and how values are
computed. The DArray type distributes data across multiple processes
and prefers computations with local memory, while the CuArray type uses
the GPU for storage and parallel execution. As explained in Section 5.2,
the distributed chunks of a DArray are arrays, typically regularCPU-
based Arrays, but we can use CuArray as the underlying data array, and
thereby distribute data and computations across multiple GPUs. For
DArray to be able to wrap and manage an array, the type only needs to
implement the object serialization interface.

Similar to the example in the previous section, an object of type
DArray{CuArray} implements the AbstractArray interface and can there-
fore be used as any other array. This kind of infrastructure portability
arises from a clear separation of concerns, each type implementing spe-
cific, fine-grained methods with minimal surface area. Both types are
oblivious about one another and generic code can take advantage of
them jointly.

4Available at https://github.com/JuliaGPU/Adapt.jl

https://github.com/JuliaGPU/Adapt.jl

98 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

Listing 34 is an example of how DArray separates the responsibili-
ties of communication and computation. Computation is delegated to
a different array type, may it be Array for CPU or CuArray for GPU
execution. Similarly, broadcast of a DArray is implemented by delegat-
ing the computation to a different array type without having to specify
which array types are supported. This allows new array types to be
bootstrapped quickly and to take advantage of these rich abstractions.
For example, a transposition of any array can be represented as an object
of type Transpose{...} without that array having to solve the problem
of transposing data itself. If there exists a better approach to transpos-
ing this kind of array, it can simply be implemented as an additional
method of the transpose function, specialized for this type.

5.4 Performance

This section analyzes the performance of different array types applied to
the examples from Section 4.1. We work with Julia version 1.0.1, using
the official binaries from the homepage. The following auxiliary pack-
ages are used: CUDAdrv.jl 0.8.6, CUDAnative.jl 0.9.1, and Forward-
Diff.jl 0.9.0. In the case of array packages, CuArrays.jl and Distributed-
Arrays.jl, we used development branches to incorporate fixes and im-
provements to the array types that we developed while working on this
functionality. Most of these changes have since been incorporated in the
main development branches.

All measurement are done on a dual processor system, with two Intel
quad-core Xeon E5-2637 v2CPUs totaling 8 cores and with simultane-
ous multi-threading support for 16 threads. The system is equipped
with 64 GiB of DDR3 ECC memory, while each CPU has 15 MiB of
shared cache. The system also contains 2 NVIDIAGPUs: a Kepler-era
GTX TITAN with 6GB memory, and a Pascal-era GeForce GTX 1080
with 8GB memory. We use a 64-bit Debian Stretch running Linux 4.9,
withCUDA 9.0 on NVIDIA driver 390.87.

Code that targets the CPU by using the Array or DArray{Array}
types is allowed to take advantage of the supported 16 simultaneous
CPU threads. In the case of Array, this is done by configuring the Open-
BLAS library that empowers many of the array abstractions as imple-
mented for Array to use 16 threads. This implies a single-process multi-
threaded parallelization. In the case of DArray{Array}, single-threaded
multi-process parallelization is used instead. This is done by configuring
the Distributed standard library that is used by DistributedArrays.jl to
launch 16 worker processes, while OpenBLAS is configured to use only

5.4. PERFORMANCE 99

thread per process to avoid oversubscription of the system. For mea-
surements with a single GPU, we use the GeForce GTX 1080 in a single
process. When targeting multiple GPUs, e.g., with the DArray{CuArray}
type, we use one worker process per GPU.

We used the BenchmarkTools.jl package to collect accurate timings
for the experiments [42]. These timings are not limited to the compute-
intensive part of the experiment, including all relevant host and device
interactions such as kernel launch overhead andRPC communication
time, but do exclude the time to allocate memory and initialize data
as realistic applications are expected to keep data on the device across
individual operations. Measurements are performed on an otherwise
idle system, after tuning in order to determine the required execution
and sample count for each experiment to yield accurate timings. In the
charts below, we report the mean execution time.

The performance evaluation below is limited in scope. We rely on ex-
isting array packages to perform well in the contexts they were designed
for, i.e., CuArrays.jl for GPU execution and DistributedArrays.jl for exe-
cution on multi-core CPU computers and distributed systems. The mea-
surements in this section serve to illustrate how the realistic problems
from Section 4.1, built on top of the array abstractions from Chapter 4,
can be used with various array types to effortlessly program heteroge-
neous systems and to benefit from the increased performance and/or
enlarged scale these systems provide. This does not necessarily imply
optimal or efficient use of the hardware, but we will show that our ap-
proach facilitates that goal.

5.4.1 Power Iteration

The example from Listing 20 is a simple application that uses array ab-
stractions. It can trivially be executed with a variety of array types, for
which it suffices to change the initial allocation site. Figure 5.1 shows
how the execution time of the domeigen function evolves with the prob-
lem size. This time includes all run-time overhead such as the time
to allocate output buffers, launchGPU kernels, and communicate data
across compute nodes.

The results in Figure 5.1 highlight several performance characteris-
tics. First of all, it is clear how regular multi-threaded Arrays have very
low overhead, and scale with increasing problem size as would be ex-
pected from working with N × N arrays. A distributed DArray{Array}
works with multiple processes that require IPC (Inter-Process Commu-
nication). This comes with a significant overhead that will be discussed
below, but with large problem sizes the performance shows to scale iden-

100 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

20 22 24 26 28 210 212 214 216

10−2

10−1

100

101

102

103

104

input size N

ex
ec

ut
io

n
tim

e
[m

s]

Array
CuArray

DArray{Array}
DArray{CuArray}

Figure 5.1: Time to execute the domeigen function from Listing 20 and
compute the dominant eigenvector and eigenvalue of a N×N matrix. We
benchmark for 1000 iterations of the power method, approximating the
reference eigenvalue with sufficient accuracy. Best-case speedup over the
multi-threaded CPU Array: 5.97× for CuArray, 0.73× for DArray{Array},
and 7.07× for DArray{CuArray}.

5.4. PERFORMANCE 101

tically to multi-threaded arrays that do not require IPC. This shows how
the use of DArray{Array} is viable for large problems, where performance
of multiple processes with IPC is comparable to that of a multi-threaded
application that does not require communication.

The CuArray measurements are for using a single GPU. Again there
is a constant overhead that dominates the performance for small input
sizes, albeit smaller than with DArray{Array}. This overhead is caused
by interactions with theCUDA driver, such as allocating memory or
launching GPU kernels. This overhead is quickly dwarfed for larger in-
put sizes, however, by the performance improvements that result from
using a GPU. These measurements show how performance of array ap-
plications that work with nontrivial data sets can be easily improved by
using a GPU array type such as CuArray.

As GPUs typically have small memories, they are limited in the
amount of data that can be processed. Although certain operations can
be implemented with so-called out-of-core algorithms that support work-
ing set sizes larger than the available memory, and features like CUDA
Unified Memory make it possible to do so without significantly chang-
ing code, these approaches come at a large performance cost [65, 89,
133]. We did not employ such techniques in the reported experiments.
For that reason, the CuArray measurements stop at input size 214. The
alternative solution of using multiple GPUs to extend the available mem-
ory requires careful management of data in order to reach good levels
of performance. This data management has already been developed as
part of DistributedArrays.jl, so we reuse that functionality via objects
of type DArray{CuArray} to distribute data automatically across GPU
devices. Figure 5.1 shows how this again comes with a large initial over-
head for small input sizes, but ultimately the approach scales past the
limits of using a single GPU and delivers performance that is better
than the projected performance of using a single GPU past its maxi-
mal problem size, consistent with the increase in computing power that
arises from using multiple GPUs. It shows how multiple GPUs can be
easily used together to extend the supported working set size of an array
application, while further improving performance despite inefficiencies
in the current IPC implementation (see below).

Similarly, DistributedArrays.jl can be used to scale past single nodes
without changes to the application, by using one of the cluster managers
as explained in Section 5.2. This makes it possible to support working
set sizes that exceed the available main memory, and to improve perfor-
mance by adding more computational power than a single node has to
offer. We will demonstrate this behavior using a computing system that
contains multiple GPUs.

102 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

5.4.2 Performance of DistributedArrays.jl
The above results show that distributed arrays displays a constant over-
head that only is amortized when the working data is sufficiently large.
Some of that overhead is to be expected becauseIPC invariably involves
communication, while types such as Array and CuArray require no such
communication. That communication does not explain all the overhead,
however. Some of it is actually caused by several inefficiencies in the
current implementation of DArray.

The first major inefficiency stems from the fact that communication
and computation share the same thread. Julia uses one event loop to
schedule tasks and to allow forward progress to be made when a task is
blocked onI/O. The event loop is current implemented using cooperative
tasks, which can lead to the unfortunate situation that a worker busy
with a computation and not yielding back to the event loop causes other
tasks responsible for communication to stall. This in turns prevents
other processes from making progress. Work is currently under way to
move to a parallel thread runtime where this would not be an issue.5

Another slowdown is due to the many data copies occurring as part
of IPC. The vector-matrix product on line 11 of Listing 20 requires
sending parts of the vector to different processes. As part of that com-
munication, extraneous copies of the data are made: The vector is first
serialized on one process and copied to an IPC socket. Then it is de-
serialized from that socket on another process to be made available as
a vector object again. There are also places within DistributedArray.jl
where unnecessary additional copies are made, such as the current im-
plementation of copyto!(::Array, ::DArray) where the remote data is
first copied into a local buffer and then copied again into the output
array. These redundant copies could be avoided by careful optimization,
and communication could be improved, e.g., by using hardware capa-
bilities such as RDMA (Remote Direct Memory Access) or NVLink for
.....GPUs. Such optimizations are very local, and often only require certain
method definitions. As an example, support for efficient communica-
tion between GPUs would require implementations of the serialize
and deserialize methods for CuArray using theCUDA IPC program-
ming interfaces. Since our system does not support NVLink, we did not
add such definitions nor explore alternative approaches. For now, com-
munication between GPUs happens through theCPU memory space.

Altogether, the current state of DistributedArrays.jl imposes signif-
icant communication overhead. As a result, the matrix-vector product
used in Listing 20 shows little speed-up with DArray{Array}. It is bound

5https://github.com/JuliaLang/julia/pull/22631

https://github.com/JuliaLang/julia/pull/22631

5.4. PERFORMANCE 103

by memory bandwidth and the cost of communication is much higher
than the computational cost of the operation. When executing List-
ing 20 with DArray{CuArray}, the performance benefit of using GPUs
overcomes that overhead.

Despite these limitations, distributed arrays are still useful, e.g., once
the working set size is too big for one machine or one GPU, or simply
when more computational power is required. Furthermore, in scenarios
that require little communication, DistributedArrays.jl scales nicely as
will be demonstrated below.

5.4.3 Kronecker Product

Computation of the Kronecker product from Listing 22 illustrates a sce-
nario where much less communication is required. The Euclidean norm
can easily be computed on local parts of the input arrays, after which the
partial scalar results can be communicated and used to compute the to-
tal norm. Figure 5.2 shows how this does not affect measurements with
multi-threaded Arrays, which do not requireIPC. The timings hence
scale quadratically, as would be expected from processing the Kronecker
product of N ×N arrays.

For the sake of completeness, timings for a dense computation are
also included, where the Kronecker product is first computed in full,
yielding a N2 ×N2 matrix. Comparing measurements with these dense
computation timings to the timings of the Array implementation that
uses the Kronecker type shows the value of using a structured matrix
for computing the Kronecker product and for the associated optimized
implementation of, here, the matrix norm. Even for small N , computing
the norm of two N ×N input matrices as per the optimized implemen-
tation for Kronecker products is faster than materializing the product
and computing the norm of a single N2 ×N2 matrix. The working set
size is of course also significantly reduced.

With fewer demands on communication, the measurements for dis-
tributedCPU arrays using DArray{Array} show a much smaller overhead
than were observed for the power iteration example. For significantly
large problem sizes, not only is the scaling behavior identical to that
of multi-threaded Arrays that do not require IPC, the performance is
in fact higher. This shows that the distributed DArray{Array} is not
only interesting for extending the working set size using distributed sys-
tems, but that it can also improve performance on a single computer
as long as the application does not require significant IPC. This per-
formance improvement can be explained by the NUMA (Non-Unified
Memory Architecture) architecture of our 2-processor system. In the

104 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

20 22 24 26 28 210 212 214 216
10−5

10−4

10−3

10−2

10−1

100

101

102

103

input size N

ex
ec

ut
io

n
tim

e
[m

s]

Array
CuArray

DArray{Array}
DArray{CuArray}

Array (dense)

Figure 5.2: Time to compute matrix norm of the Kronecker product
of two N ×N matrices. Measurements marked with “dense” first com-
pute the Kronecker product in full, while other measurements uses the
structured matrix type from Listing 22 and the accompanying norm
calculation from Listing 23. Best-case speedup of the sparse implemen-
tations over the multi-threaded CPU Array: 19.89× for CuArray, 5.20×
for DArray{Array}, 35.15× for DArray{CuArray}.

5.4. PERFORMANCE 105

case of Array, the entire array is allocated once on one of the NUMA
nodes and processing from threads on a different NUMA node results
in relatively slow memory accesses. With DistributedArrays.jl, data is
explicitly partitioned across workers on the system. This results in data
allocated in the local NUMA node, therefore minimizing memory traffic
across NUMA zones.

Similar to the previous example, use ofGPU hardware with CuArray
objects significantly improves performance, but comes with a constant
overhead that necessitates large input sizes. With DArray{CuArray}, we
again manage to scale past the memory limit of a single GPU.

5.4.4 Proximal Gradient Descent

In Section 5.4.2 we mentioned a major performance penalty in the cur-
rent implementation of DistributedArrays.jl due to inefficiencies with
..... . .IPC. This is particularly noticeable in the machine learning example
from Listing 21, where the main computational cost comes from matrix-
vector multiplications as part of the proximal_gradient_descent method.
These operations require significant communication, which is trouble-
some given the current implementation of IPC in DistributedArrays.jl.
Indeed, Figure 5.3 shows how distributed execution with DArrays is dom-
inated by the cost of communication, and even drowns out any perfor-
mance benefits that come from usingGPU hardware. In contrast, local
execution with CuArray shows significant run-time improvements com-
pared toCPU-based Arrays, but is limited in terms of the working set
size. As such, while the performance of distributed execution is far from
optimal at this point, it makes it possible to scale beyond single devices
and benefit from, e.g., the increase in available memory.

This example illustrates how application performance and potential
improvements of using different array types are currently subject to ap-
plication characteristics and how those influence the (composition of)
the underlying array libraries. For example, Figure 5.3 shows how the
example from Listing 21 benefits significantly from using a GPU, but
currently does not improve when executed on a distributed system due
to the heavy use of IPC. The example from Listing 20 does not rely as
much on IPC, and Figure 5.1 shows how it benefits from using multiple
GPUs in a distributed setting. At the other end of the spectrum, the
example from Listing 22 does hardly use any IPC and as a result Fig-
ure 5.2 shows how use of distributed CPU and GPU resources yields
significant speedups.

106 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

20 23 26 29 212 215 218 221

100

101

102

103

104

105

106

input size N

ex
ec

ut
io

n
tim

e
[m

s]

Array
CuArray

DArray{Array}
DArray{CuArray}

Figure 5.3: Time to perform 25 iterations of proximal gradient descent
from Listing 21 to optimize a network of 100 parameters for N outputs.
The implementation uses linear regression as a user defined model and
performs enough iterations for the loss to reach 0.01 given random in-
puts from a normal distribution with µ = 0 and σ2 = 1. Best-case
speedup over the multi-threaded CPU Array: 27.89× for CuArray, 0.64×
for DArray{Array}, 0.62× for DArray{CuArray}.

5.5. OPTIMIZATION OPPORTUNITIES 107

5.5 Optimization Opportunities
The code examples analyzed so far have been written using high-level,
idiomatic code that stays close to the mathematical definitions. This
coding style is common with prototyping code, and as we have shown
does still allow for good performance and portability towards heteroge-
neous computing environments.

After the initial prototyping phase in other high-level languages, de-
velopers typically rewrite (part of) their code in a high-performance
language. With a high-level language that is designed for performance,
as Julia is, this translation step can be avoided. Bezanson et al. [31]
show how instead the Julia language features great performance from
the get go, and makes it possible to optimize code within the language
itself to the point where it reaches or even goes beyond the performance
of statically compiled languages such as C or Fortran.

Furthermore, a one-language solution makes it easier for domain ex-
perts and code optimization experts to communicate and work together.
Results can be passed between R&D and production teams, and pro-
totyping code can be improved until fit for reuse by other projects or
programmers. This avoids one-off solutions, improving the productivity
and performance of future prototyping efforts.

5.5.1 Array Programming

In the case of array programming, common optimizations include us-
ing pre-allocated buffers and in-place operations for matrix operations,
replacing operations on small containers with explicit loops, optimizing
the iteration order, etc. By using generically typed functionality, or func-
tionality that is expected to be implemented for all array types (such
as methods from the AbstractArray interface, common linear algebra
operations like matrix-matrix multiplication, etc), it is possible for such
optimizations to be type-generic and reusable in the context of different
array types.

As an example, consider how every iteration of the for loop in the
domeigen function of Listing 20 allocates two temporary containers to
store the outputs of the operations on line 14. Listing 38 shows an al-
ternative version that pre-allocates two containers before the loop and
uses in-place operations to prevent new allocations. This trivial opti-
mization significantly improves performance, especially in the case of
small inputs where the overhead of allocating memory is similar to the
run time of the actual array operations. For example, withCPU arrays
of size 64 × 64 or smaller, this optimization improves performance by

108 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

1 function domeigen(A, p)
2 ...
3
4 # power iteration
5 bk = b0
6 bk+1 = similar(bk)
7 for _ in 1:p
8 mul!(bk+1, A, bk)
9

10 # normalize
11 bk .= bk+1 ./ norm(bk+1)
12 end
13
14 ...
15 end

Listing 38: Optimization of the power iteration loop from Listing 20,
using pre-allocated buffers and in-place array operations.

1 using CuArrays
2 using ForwardDiff: Chunk, DEFAULT_CHUNK_THRESHOLD
3
4 Chunk(x::CuArray, threshold = DEFAULT_CHUNK_THRESHOLD) = Chunk{8}()

Listing 39: Optimizing the use of ForwardDiff.jl from Listing 21 for GPU
execution.

up to 15%. Furthermore, the change is fully generic and equally applies
to other array types. With CuArrays, where memory allocations are not
backed by a high-performance garbage collector, the improvements are
about 5% for all matrix sizes as used in this evaluation.

5.5.2 Multiple Dispatch

Beyond optimizing the use of array abstractions, it is always possible to
use multiple dispatch for providing fine-grained method overloads that
optimize critical pieces of underlying functionality. One obvious exam-
ple as discussed in Section 5.3 are method overloads that avoiding scalar
iteration, e.g., in an underlying library that is used by the application.
Although the main purpose of these overloads is to improve performance
when working with heterogeneous computing devices, the implementa-
tions are often generic and can be used for all array types.

5.5. OPTIMIZATION OPPORTUNITIES 109

Method overloads can also be specific to an array type, and provide
functionality that only optimizes execution for that type. For exam-
ple, the ForwardDiff.jl library as used in Listing 21 performs partial
derivative evaluations on the input vector in chunks [127]. Performing
the evaluations on small smaller chunks uses less memory but requires
more evaluations of the target function. In the case ofGPU execution,
larger chunks also require more registers, which might result in ineffi-
cient use of the GPU’s parallel compute units. ForwardDiff.jl uses a
heuristic to optimize the chunk size and minimize the amount of chunks
given the size of the input vector. Listing 39 shows how to override that
heuristic for GPU arrays by hard-coding an empirically-chosen chunk
size that performs well given a specific application and GPU. Note that
a production-quality version of this function would need to specialize
on the performance characteristics of the GPU hardware that backs the
input array.

110 CHAPTER 5. ARRAY PROGRAMMING FOR PORTABILITY

Chapter 6
Automatic Differentiation
of GPU Broadcast Kernels

Where the previous chapters have focused on using array abstrac-
tions for programmability and portability, we show in this chapter how
they can be used for high-level algorithmic optimization. Specifically,
we show how AD (Automatic Differentiation), a set of techniques to
evaluate the derivative of a computer program, can be applied to differ-
entiate broadcast operations. Our approach exploits the structure and
semantics of the operation to derive efficiently onGPU hardware.

The work in this chapter was developed together with Jarrett Revels
and Valentin Churavy of Massachusetts Institute of Technology. My
contribution focuses on the GPU implementation, optimization, and
performance evaluation. Our work builds on the CUDAnative.jl com-
piler from Chapter 3 and the CuArrays.jl library from Chapter 4, and
on existing packages for AD in Julia by Jarrett Revels.

The scientific contribution of this chapter is an optimization
that exploits the structure of the broadcast operation for the
purpose of efficient automatic differentiation on GPUs. We
demonstrate the use of this technique forML, where gradient-
based optimization is prevalent and GPUs are ubiquitous. Us-
ing a realistic model that includes dynamic control flow, we
show that our approach enables efficient differentiation that
would not be possible with the AD approaches as used by many
popular ML frameworks. These contributions have been pre-
sented at a peer-reviewed conference workshop.1

1Jarrett Revels, Tim Besard, Valentin Churavy, Bjorn De Sutter, and Juan Pablo
Vielma. “Dynamic Automatic Differentiation of GPU Broadcast Kernels”. Presented
at the Workshop on Systems for ML at the Conference on Neural Information Pro-
cessing Systems (NeurIPS). 2018. arXiv: 1810.08297 [cs.MS].

https://arxiv.org/abs/1810.08297

112 CHAPTER 6. AUTOMATIC DIFFERENTIATION

6.1 Related Work

In recent years, the increased use of gradient-based optimization inML
has motivated an upsurge in the development of ML-specific modeling
languages that incorporateAD as a fundamental feature. However, con-
temporary ML research routinely seeks to utilize new modeling and op-
timization techniques that push these frameworks’ AD capabilities to
– and past – their limit. Both practical and exploratory implementa-
tions of such techniques demand advanced features such as nested differ-
entiation, differentiation through data-dependent control flow, domain-
specific hardware specialization, distributed parallelism, checkpointing,
and more [99, 43, 86, 94, 10, 116, 1].

In the pursuit of solutions capable of incorporating such features, it
has become clear that modeling languages’ expressiveness must necessar-
ily be constrained for the sake of differentiability. Recent endeavors [153,
34, 60, 55, 152, 72, 144, 137] that explore this tradeoff have been guided
by established methods from programming language theory, provoking
the evolution of a new research area known as differentiable program-
ming. This is quite a natural development, as the narrative of traditional
AD research has always been richly intertwined with research into pro-
gramming languages and mathematical programming.

The work in this chapter aims to extend the expressiveness of Julia
as an ML modeling language by using mixed-mode AD to dynamically
compute the derivatives of broadcast expressions. By taking advantage
of the design of the broadcast operation as discussed in Chapter 4, we
can efficiently derive operations that would otherwise be prohibited by
the modeling language, such as data-dependent control flow. We will
show that these features are relevant to real-life ML models.

6.2 Background: Automatic Differentiation

Automatic differentiation is a technique for evaluating the derivative of
a function as specified by a computer program. It differs from symbolic
differentiation, where mathematical rules are applied to differentiate a
mathematical expression and not an arbitrary computer program. Con-
version of a computer program to such a mathematical expression is of-
ten difficult, and incompatible with program constructs such as control
flow. Instead,AD decomposes the computer program into a sequence
of elementary arithmetic operations and functions for which the deriva-
tives are known, and applies the chain rule to aggregate these results
and compute derivatives of arbitrary expressions.

6.2. BACKGROUND 113

1 w1 = x1
2 w2 = x2
3 w3 = w1 * w2
4 w4 = sin(w1)
5 w5 = w3 + w4
6 y = w5

Listing 40: Implementation of y = x1 * x2 + sin(x1) using only ele-
mentary arithmetic operations and functions.

For example,2 given the mathematical expression f(x1, x2) = x1 ·x2+
sin(x1) we can write a simple computer program that evaluates y = x1 *
x2 + sin(x1). For the purpose of AD, we break down this program into a
sequence of elementary arithmetic operations and functions in Listing 40
for which we can simply look up the derivatives.

To derive the program in Listing 40 with respect to its inputs x1
and x2, i.e., to compute the partial derivatives ∂y

∂x1
and ∂y

∂x2
, we need to

repeatedly apply the chain rule in order to propagate the derivatives of
intermediate w values:

∂y

∂t
=

∂y

∂w
· ∂w
∂t

For operations that depend on more than two variables, we can use
the multivariable version of the chain rule:

∂y

∂t
=

∑
i

∂y

∂wi
· ∂wi

∂t

6.2.1 Forward Mode

In forward-modeAD, we apply the aforementioned chain rule in a for-
wards fashion, and compute the derivative of an expression based on the
derivatives of its inputs. For example, if we take the program from List-
ing 40 and derive each elementary expression with respect to some yet-
to-determine variable t, we get the following expressions:

2This example was modeled after content by Berland [11] and Ruffwind [131].

114 CHAPTER 6. AUTOMATIC DIFFERENTIATION

1 dw1 = dx1
2 dw2 = dx2
3 dw3 = w2 * dw1 + w1 * dw2
4 dw4 = cos(w1) * dw1
5 dw5 = dw3 + dw4
6 dy = dw5

Listing 41: Derived version of the program in Listing 40 with forward
accumulation of intermediate derivatives. Execution of this program
should follow execution of the original program from Listing 41.

∂w1

∂t
=

∂x1
∂t

∂w2

∂t
=

∂x2
∂t

∂w3

∂t
=

∂w3

∂w1
· ∂w1

∂t
+

∂w3

∂w2
· ∂w2

∂t
= w2 ·

∂w1

∂t
+ w1 ·

∂w2

∂t
∂w4

∂t
=

∂w4

∂w1
· ∂w1

∂t
= cos(w1) ·

∂w1

∂t
∂w5

∂t
=

∂w5

∂w3
· ∂w3

∂t
+

∂w5

∂w4
· ∂w4

∂t
=

∂w3

∂t
+

∂w4

∂t
∂y

∂t
=

∂w5

∂t

(6.1)

As our original expression has multiple inputs, x1 and x2, we need
to fix the independent variable with respect to which the differentiation
is performed. We do so by picking a variable for t. For example, with
t = x1 the expressions from Equation 6.1 compute ∂y

∂x1
, whereas with

t = x2 we get ∂y
∂x2

.
In the corresponding program from Listing 41, choosing a variable

for t affects the initial values for dx1 and dx2. For example, with t = x1
we get that dx1 = ∂x1

∂t = ∂x1
∂x1

= 1 and dx2 = ∂x2
∂t = ∂x1

∂x2
= 0. Put

differently, if we want to compute the derivative with respect to x1, we
need to set dx1 to 1 and dx2 to 0.

These so-called seed values determine the behavior of the derived
program from Listing 41. The fact that there are two seed values, one
for each input variable, necessitates two evaluations in order to com-
pute partial derivatives with respect to both input variables. This is a
common requirement, e.g., to compute the gradient of a function.

6.2. BACKGROUND 115

1 dw5 = dy
2 dw4 = dw5
3 dw3 = dw5
4 dw2 = dw3 * w1
5 dw1 = dw3 * w2 + dw4 * cos(w1)
6 dx1 = dw1
7 dx2 = dw2

Listing 42: Derived version of the program in Listing 40 with reverse
accumulation of intermediate derivatives. Execution of this program
should follow execution of the original program from Listing 41.

6.2.2 Reverse Mode

To avoid the cost of multiple evaluations of the derived program, one
for each combination of seed values and corresponding with the number
of inputs, reverse modeAD computes the derivative of a program from
the outputs to its inputs. It builds on the fact that the chain rule is
symmetric, and can be reversed in order to compute the derivative of an
operation based on the derivatives of its outputs:

∂t

∂y
=

∂t

∂w
· ∂w
∂y

=
∑
i

∂t

∂wi
· ∂wi

∂y

If we apply this to the program from Listing 40, we get the following
expressions:

∂t

∂w5
=

∂t

∂y

∂t

∂w4
=

∂t

∂w5
· ∂w5

∂w4
=

∂t

∂w5

∂t

∂w3
=

∂t

∂w5
· ∂w5

∂w3
=

∂t

∂w5

∂t

∂w2
=

∂t

∂w3
· ∂w3

∂w2
=

∂t

∂w3
· w1

∂t

∂w1
=

∂t

∂w3
· ∂w3

∂w1
+

∂t

∂w4
· ∂w4

∂w1
=

∂t

∂w3
· w2 +

∂t

∂w4
· cos(w1)

∂t

∂x1
=

∂t

∂w1

∂t

∂x2
=

∂t

∂w2

(6.2)

116 CHAPTER 6. AUTOMATIC DIFFERENTIATION

Where forward mode fixed the independent variable, with reverse-
mode AD we need to fix the dependent variable to be differentiated. In
the case of the example from Listing 40 there is only a single dependent
variable, y, so we only have a single value to seed, dy, giving it a value
of 1 as per dy = ∂t

∂y = ∂y
∂y = 1. Evaluation of the derived program

from Listing 42 now directly yields two values, dx1 and dx2, respectively
computing the partial derivatives ∂t

∂x1
= ∂y

∂x1
and ∂t

∂x2
= ∂y

∂x2
.

6.2.3 Forward vs. Reverse Mode

To calculate the derivatives of the outputs of a function with respect to
its inputs, forward mode requires a number of evaluations of the derived
program that scales with the number of inputs, while the performance of
reverse mode depends on the number of outputs. However, closer inspec-
tion of the derived programs in Listing 42 reveals that, given constant
seed values, common compiler optimizations such as constant propa-
gation, common subexpression elimination or partial evaluation should
render both programs and hence both approaches identical.

In practice, these optimizations don’t suffice. For one, values that re-
sult from, e.g., multiplication by a seed value of zero cannot be dropped
due to floating-point semantics. Called functions might have side ef-
fects, or the compiler might have trouble proving they are side-effect
free, again inhibiting essential optimizations. Constant propagation and
other optimizations are also typically intraprocedural and would not for-
ward constant seeds to functions that are not inlined. In the case of the
Julia language, specialization can be used to avoid this issue. Indeed,
the ChainRules.jl package with primitives for automatic differentiation
expresses seed values using the Zero and One types, forcing the compiler
to specialize code while making it possible to use multiple dispatch for
optimized implementations of problematic operations such as multipli-
cation by zero.

Relying on compiler optimizations to equalize forward and reverse
mode does however not generalize to expressions that work with vectors,
as is common with deep-learning applications where inputs represent
weights and parameters of the network. The derivative of these func-
tions is a matrix, known as the Jacobian matrix, with each element a
partial derivative with respect to certain elements of the input and out-
put vectors. This has the effect that seed values are no longer constant,
and cannot be used to specialize the derived program.

6.2. BACKGROUND 117

6.2.4 Mixed Mode

It is clear that forward and reverse-mode differentiation have different
trade-offs with respect to the characteristics of the function under deriva-
tion, such as the input and output arity. However, “optimal” differenti-
ation cannot be achieved via pure forward- or reverse-mode approaches,
but rather demands a mixed-mode approach [111]. Achieving optimal-
ity, in this case, is often defined as minimizing the number of multiply-
adds required to differentiate a given program via selecting the optimal
mode for each region of code, and is known as the OJA (Optimal Ja-
cobian Accumulation) problem. This problem has been shown to be
NP-complete [110].

Despite this general theoretical intractability, mixed-modeAD of-
fers a host of other advantages that can still be leveraged in practice
by heuristically exploiting the local structure of the target language’s
primitive operations. The broadcast operation inherits such a structure:
its kernels are scalar without cross-element dependencies, resulting in
a highly-sparse Jacobian with zero-valued cross-element partial deriva-
tives that makes it ideally suited for forward-mode differentiation [126].
Furthermore, this structure also applies to fused broadcast kernels, and
enables differentiation of fully-fused broadcast subgraphs without requir-
ing the construction of a backwards pass [126].

However, use of forward-mode differentiation can have certain disad-
vantages, even in the context of the broadcast operation. Why, then, is
forward mode the better choice for this use case? The answer to this
question can be summarized in three points:

1. If the input arity N is greater than the output arity M , then
reverse mode is algorithmically superior to forward mode. How-
ever, broadcast operations generally have low arity (often < 10),
and in practice, forward mode often outperforms reverse mode
for low-arity functions regardless of the N/M ratio. There are
two reasons for this. First, reverse-mode implementations often
incur relatively high constant costs that are not amortized in the
low-arity regime. Second, forward mode’s additional chain rule ap-
plications can be offset for low-arity functions by leveraging stack
allocation schemes that make better use of cache bandwidth and
allow for the exploitation of instruction-level parallelism [127].

2. In the case that the target function contains data-dependent con-
trol flow, reverse-mode implementations must dynamically allo-

118 CHAPTER 6. AUTOMATIC DIFFERENTIATION

cate the data-dependent regions of the computation graph.3 For
low-arity functions, the overhead of dynamic trace allocation can
easily dwarf the cost of the target function’s primal evaluation.
For broadcasted operations, this high overhead would be incurred
for every elementwise invocation, rendering the reverse-mode ap-
proach in this case wholly unsuitable for theGPU where excessive
dynamic allocation is infeasible.

3. Following from the previous point, using forward mode for broad-
cast differentiation allows data-dependent control flow to occur
within broadcasted scalar operations, thus avoiding several disad-
vantages inherent to vectorized control flow primitives currently
employed by reverse-mode frameworks (e.g., TensorFlow’s where [1]).
The first disadvantage is programmability; vectorized control flow
primitives are often more cumbersome to use than their naive
scalar counterparts. The second disadvantage is that many vector-
ized control flow primitives require computing untaken branches.
While these primitives do have the benefit of clearly avoiding warp
divergence on the GPU, the experiment described in Section 6.3
demonstrates that this benefit does not necessarily offset the cost
of computing untaken branches on newer GPU architectures – es-
pecially if the difference in cost between branches is substantial –
since newer architectures support executing different instructions
across a warp without forcing serialized execution.

We have created the MixedModeBroadcastAD.jl4 package to demon-
strate mixed-mode AD that exploits the structure of broadcast to per-
form efficient forward-mode differentiation. Further details on this im-
plementation can be found in Revels et al. [126]. As a consequence of
using forward-mode AD, we can execute complex models that include
data-dependent control flow on the GPU.

3This requirement is not implementation-specific, but rather a hard theoretical
limit; capturing intermediate values which depend on run time data will always re-
quire run time allocation in the general case, though certain optimizations may al-
leviate this burden in special cases. This requirement applies even to reverse-mode
tools that claim to be “tapeless” by statically generating backwards pass code [103,
72], or performing equivalent transformation via language-level constructs such as
delimited continuations or closures [150]. As Pearlmutter and Siskind [117] remark,
it is “impossible” to “eliminate the tape from reverse-mode AD” because “the tape
stores intermediate values computed during the forward phase that are needed during
the reverse phase.”

4Available at https://github.com/jrevels/MixedModeBroadcastAD.jl

https://github.com/jrevels/MixedModeBroadcastAD.jl

6.3. EVALUATION 119

While the MixedModeBroadcastAD.jl package is meant as a proof-
of-concept, the technique at large is part of popular Julia packages such
as ReverseDiff.jl [125], Flux.jl [74] and Zygote.jl [72].

6.3 Evaluation
To compare our forward-mode broadcast differentiation technique with
existing reverse-mode approaches, we describe an experiment based on
the cell update calculation that occurs during the execution of an HM-
LSTM (Hierarchical Multiscale LSTM) neural network [44]. We use
three differentAD implementations to calculate gradients: TensorFlow-
based reverse mode, Julia-based reverse mode, and Julia-based forward
mode. Each of these implementations are available in the MixedMode-
BroadcastAD.jl repository. Finally, we analyzeGPU performance mea-
surements obtained from benchmarking these implementations.

6.3.1 HM-LSTM Cell Update
TheHM-LSTM cell update calculation is a real-world example of a
broadcast operation that is amenable to differentiation. For a given
time step t and layer ℓ, the update calculation for the cell cℓt is:

cℓt =


σ.(fℓt) .× cℓt−1 .+ σ.(iℓt) .× tanh .(gℓ

t) if zℓt−1 = 0, zℓ−1
t = 1 (UPDATE)

cℓt−1 if zℓt−1 = 0, zℓ−1
t = 0 (COPY)

σ.(iℓt) .× tanh .(gℓ
t) if zℓ−1

t = 1 (FLUSH)
(6.3)

where f and i are memory gates, g is a cell proposal vector, and z is
a boundary state.

We chose this operation as our experimental test case because it is
self-contained, hinges on data-dependent control flow, has a substantial
computational cost difference between branches, and is relevant to a
machine learning audience.

The benchmarks described in the following sections are primarily
concerned with the calculation of ∂cℓ

t

∂cℓ
t−1

, ∂cℓ
t

∂fℓt
, ∂cℓ

t

∂iℓt
, and ∂cℓ

t

∂gℓ
t
.

6.3.2 Reverse-Mode TensorFlow
The first implementation tested in our experiment was a TensorFlow-
based implementation derived from Finkelstein [56]. This implementa-
tion, shown in Listing 43, makes use of TensorFlow’s vectorized control

120 CHAPTER 6. AUTOMATIC DIFFERENTIATION

1 def hmlstm_update_c(z, zb, c, f, i, g):
2 i = tf.sigmoid(i)
3 g = tf.tanh(g)
4 f = tf.sigmoid(f)
5 return tf.where(
6 tf.equal(z, tf.constant(1., dtype=tf.float32)),
7 tf.multiply(i, g),
8 tf.where(
9 tf.equal(zb, tf.constant(0., dtype=tf.float32)),

10 tf.identity(c),
11 tf.add(tf.multiply(f, c), tf.multiply(i, g))
12)
13)

Listing 43: Implementation of the HM-LSTM cell-update calculation
from Equation 6.3 in Python with TensorFlow.

flow primitive where, which eagerly computes both branches of the con-
ditional statement before returning the branch specified by the given
predicate. This primitive sidesteps actual branching and thus avoids
two potential pitfalls discussed in Section 6.2: dynamic trace allocation
and warp divergence. Avoiding these two perceived pitfalls comes at the
cost of restricting the programming model and limiting opportunities
for optimizations such as broadcast fusion.

The TensorFlow XLA (Accelerated Linear Algebra) compiler breaks
this computation up into six separate kernels, as can be derived from
the computational graph produced by TensorFlow’s HLO (High Level
Optimizer). Each kernel represents a partially fused region of the for-
ward and reverse passes, including broadcasted select operations that
were generated from the initial code’s where invocations. One of these
kernels is shown in Figure 6.1.

6.3.3 Reverse-Mode Julia

The second implementation tested in our experiment was a reverse-mode
implementation in the Julia language [30]. This implementation was di-
rectly derived from theHLO graph of the TensorFlow implementation
described in the previous section. The intent was to exactly mirror
TensorFlow’s operations at the abstraction level of its HLO representa-
tion, and enable a direct comparison between reverse-mode TensorFlow
and reverse-mode Julia before comparing against a forward-mode Julia
implementation. To accomplish this, the HLO graph operations were
manually transcribed to native Julia code shown in Listing 44.

6.3. EVALUATION 121

Figure 6.1: Partial HLO graph as emitted by the TensorFlow XLA com-
piler for the HM-LSTM cell-update implementation from Listing 43.

122 CHAPTER 6. AUTOMATIC DIFFERENTIATION

1 function hmlstm_update_c!(inputs, derivs, buffers)
2 z, zb, c, f, i, g = inputs∇
3 c, ∇f, ∇i, ∇g = derivs
4 P0, P1, P2, P3, P4, P5 = c, z, zb, f, g, i
5
6 fusion2 = fusion_2_or_5!(tanh, buffers[1], P5)
7 tanh1 = broadcast!(tanh, buffers[2], P4)
8 fusion5 = fusion_2_or_5!(tanh, buffers[3], P3)
9 fusion = fusion∇!(g, fusion2, tanh1, P1, P2)

10 fusion1 = fusion1∇!(i, fusion2, tanh1, P1, P2)
11 fusion3 = fusion3∇!(f, fusion5, P0, P1, P2)
12 fusion4 = fusion4∇!(c, fusion5, P1, P2)
13 return nothing
14 end
15
16 function fusion4∇!(c, fusion5, P1, P2)
17 P4 = P1
18 P3 = P2
19 P2 = 0.0f0
20 P1 = 1.0f0
21 P0 = fusion5
22 return broadcast∇!(c, P0, P1, P2, P3, P4) do p0, p1, p2, p3, p4
23 equalto5 = p3 == p2
24 equalto19 = p4 == p1
25 select14 = ifelse(equalto19, p2, p1)
26 select4 = ifelse(equalto5, select14, p2)
27 select13 = ifelse(equalto5, p2, select14)
28 multiply29 = select13 * p0
29 return select4 + multiply29
30 end
31 end

Listing 44: Partial implementation of the HM-LSTM cell-update calcu-
lation from Equation 6.3 in reverse-mode Julia that exactly mimics the
execution by TensorFlow in Listing 43. Specifically, this listing shows
the kernel from Figure 6.1.

6.3. EVALUATION 123

1 function hmlstm_update_c(z, zb, c, f, i, g)
2 if z == 1.0f0 # FLUSH
3 return sigm(i) * tanh(g)
4 elseif zb == 0.0f0 # COPY
5 return c
6 else # UPDATE
7 return sigm(f) * c + sigm(i) * tanh(g)
8 end
9 end

Listing 45: Implementation of the HM-LSTM cell-update calculation
from Equation 6.3 in scalar Julia code, to be used with the broadcast
abstraction.

6.3.4 Forward-Mode Julia
The third implementation tested in our experiment was a native Julia
implementation of forward-mode broadcast differentiation. This imple-
mentation differs substantially from the previous reverse-mode imple-
mentations, most importantly the manner in which the primal calcula-
tion was expressed. While the reverse-mode implementations expressed
control flow via vectorized primitives (e.g., ifelse in Listing 45), the
forward-mode approach allows the fusion of control flow into the broad-
casted kernel without incurring the reverse mode-specific performance
penalties discussed in Section 6.2. Listing 45 shows the scalar computa-
tion of the cell update, fused into a single kernel by broadcasting over
the model inputs:

update(c, f, i, g, z1, z2) =



σ(f)× c+ σ(i)× tanh(g)
if z1 = 0, z2 = 1 (UPDATE)

c if z1 = 0, z2 = 0 (COPY)
σ(i)× tanh(g)

if z2 = 1 (FLUSH)

(6.4)

cℓt = update.(cℓt−1, fℓt, iℓt,gℓ
t, z

ℓ
t−1, z

ℓ−1
t) (6.5)

An implementation of the D operator as described in Revels et al.
[126] was then applied to Equation 6.4 to calculate the required gradi-
ents. The D operator itself was implemented using the multidimensional
dual number type provided by the ForwardDiff.jl package, which repre-
sents a dual number as a pure Julia struct with two fields; one for
the primal scalar, and one for a stack-allocated vector of perturbation
coefficients [127].

124 CHAPTER 6. AUTOMATIC DIFFERENTIATION

6.4 Performance
Python code was executed using Python 3.6.3 with TensorFlow 1.5.0
and itsXLAJIT compiler (which includes a copy ofLLVM close to
version 6.0). Julia code was executed using a development version of
Julia 0.7, built on LLVM 6.0. All required versions of all Julia pack-
ages used are publicly available: CUDAnative.jl version 0.8.1, CUDA-
drv.jl 0.8.3, LLVM.jl 0.9.8, and ForwardDiff 0.7.5. We used theCUDA
toolkit at version 9.1.85, in combination with NVIDIA driver 390.30 and
Linux 4.13 from Ubuntu 17.10.

TheHM-LSTM implementations were tested on several generations
of NVIDIAGPUs: a Tesla V100 (Volta), a Tesla P100 (Pascal), and a
GTX Titan (Kepler), in combination with 2 hexa-core Intel Xeon E5-
2603 v4CPUs and 64 GiB of DDR4 memory.

We measure the performance of individual implementations using
the NVIDIA profiling tools from the CUDA toolkit. We made sure that
each implementation behaves identically from a CUDAAPI point of
view, i.e., launching the same amount of kernels, performing identical
allocations, etc. As such, we only report kernel timings, excluding, e.g.,
memory transfers and other CUDA API interactions,

For the sake of accurate comparison, our Julia-based benchmarks fol-
lowed TensorFlow’s configuration where possible, e.g., using page-locked
memory allocated asynchronously using the driver API, performing an
identical amount of memory transfers, launch kernels identically (using
at most 64 threads and a corresponding number of blocks), etc.

6.4.1 Reverse Mode
Figure 6.2 shows the execution times to compute the aforementioned
derivatives for eachAD implementation across three generations ofGPUs
from NVIDIA, with cℓt−1, fℓt, iℓt, and gℓ

t taking n × n random 32-bit
floating-point matrix values and zℓt−1 and zℓ−1

t taking n-element random
32-bit floating-point vector values where n ∈ {512, 1024, 2048}.

By comparing the performance of reverse-mode AD implemented in
TensorFlow and Julia, with no semantic differences between both im-
plementations, we aim to assess the overhead of using Julia for GPU
programming. We have demonstrated in Chapter 3 that low-level ker-
nel code performs competitively, yet Figure 6.2 shows a performance
penalty on older hardware. This can be explained by the current im-
plementation of the broadcast abstraction: part of the ability to work
with heterogeneous containers is only materialized at run time, passing
along iterators to default values for when extruding the dimensions of

6.4. PERFORMANCE 125

512 1,024 2,048
101

102

103

GTX Titan (Kepler)

512 1,024 2,048
101

102

103

Tesla P100 (Pascal)

512 1,024 2,048
101

102

103

Tesla V100 (Volta)

co
m
p
u
te

ti
m
e
[µ
s] Reverse (TensorFlow)

Reverse (Julia)

Forward (Julia)

Figure 6.2: Total kernel compute times for the HM-LSTM cell-update
calculation from Equation 6.3 across different AD implementations.

126 CHAPTER 6. AUTOMATIC DIFFERENTIATION

a container. As explained in Section 4.3.1, broadcasting over, e.g., a
vector and a matrix results in a two-dimensional iteration space where
the one-dimensional vector needs to be extruded into the second dimen-
sion. This is accomplished at run time, conditionally branching on the
current indices and falling back to default values for any singleton dimen-
sion. These branches are relatively cheap on traditional multiprocessors,
but perform badly on older generations of GPU hardware, further ex-
acerbated by the thread divergence that they introduce. Meanwhile,
....XLA specializes the broadcasts with respect to the shape and size, effec-
tively avoiding this run-time uncertainty. This kind of specialization is
possible in Julia too, but has not been implemented in CuArrays.jl yet
because of the neglegible impact on recent GPU hardware.

6.4.2 Forward Mode

As can be seen in Figure 6.2, the forward-mode Julia implementation
features a speedup of 4.28x, 2.66x, and 2.60x over the reverse-mode
Julia implementation on the Volta, Pascal, and Kepler architectures, re-
spectively. Compared to the reverse-mode TensorFlow implementation,
these speedups are 4.18x, 1.53x and 1.07x, respectively.

As mentioned in Section 6.2, a substantial advantage of the forward-
mode approach is that it avoids the computation of untaken branches
by allowing data-dependent control flow to be fused within the broad-
casted operation itself. However, this kind of fine-grained branching has
traditionally been considered unfavorable forGPUs, which typically re-
quire threads within a so-called “warp” (a group of typically 32 threads)
to execute in lockstep. If threads within a warp branch to different
instructions, the hardware must execute both branches on all threads
within the warp and mask out the results of untaken branches on each
thread. This is known as warp divergence, and can decrease performance
significantly [32].

Fortunately, recent hardware improvements found on NVIDIA’s Volta
architecture can drastically mitigate the negative impact of warp di-
vergence in many cases. This architecture enables independent thread
scheduling by maintaining a program counter and call stack for every
thread separately, thus allowing threads to execute different instructions
without requiring serialized execution [114]. The effects of this architec-
tural improvement can be seen in Figure 6.3, which shows the ratio of
the forward-mode Julia implementation’s execution time between uni-
formly distributed random control inputs and warp-uniform control in-
puts, thus controlling warp divergence as encountered during execution.
Executing on a Tesla V100 GPU, the overhead of the thread-divergent

6.4. PERFORMANCE 127

Titan P100 V100
100%

120%

140%

160%

ex
ec

ut
io

n
tim

e
ra

tio compute
application

Figure 6.3: Total kernel compute and application execution times for
the Julia forward-mode implementation, with random control inputs
vs. warp-uniform control inputs.

0 5 10 15 20
0%

20%

40%

60%

80%

100%

arity

compute

bandwidth
occupancy

Figure 6.4: Effects of increasing operation arity on GPU compute uti-
lization, memory bandwidth utilization, and kernel occupancy of a
Tesla V100.

implementation in terms of kernel execution time drops from 40% to
30% on Kepler and Pascal. When looking at total application execution
time, this cost is even lower (below 1%), as kernels also execute faster
on more recent hardware.

6.4.3 Broadcast Arity

In addition to the main experiment, a different experiment was per-
formed to explore how various indicators ofGPU utilization scale as the
arity of a forward mode-differentiated broadcast operation increases.

As previously stated, the ForwardDiff package’s multidimensional
dual number implementation utilizes a stack-allocated vector to store
perturbation coefficients. By definition, the length of every input, out-
put, and intermediate dual number’s perturbation vector is equal to the
input arity of the target operation. Thus, increasing the input arity of

128 CHAPTER 6. AUTOMATIC DIFFERENTIATION

the target operation increases register pressure. OnCPUs, increased
register usage can quickly result in excessive stack pressure, such that
temporary values must be spilled into memory. On GPUs, however,
many more registers are available; for example, the Tesla V100 contains
65,536 32-bit registers on each of its 84 SM (Shared Multiprocessor) [114].
This advantage is offset by the large number of threads executing con-
currently on the GPU, since each thread reserves a number of registers
for exclusive use. The balance between active thread count and register
usage is captured by the occupancy metric, precisely defined as the ra-
tio of active warps on an SM to the maximum number of active warps
supported by the SM. With increased register usage, fewer warps can be
allocated on each SM, and occupancy drops.

To assess the impact of a broadcasted operation’s input arity on the
performance of its forward-mode differentiation by dual numbers, we
designed an artificial benchmark and measured its achieved occupancy
and effective hardware utilization: the computation of D(f).(x1 . . .xN)
where

f(x1 . . . xN) =
∏
i

tanh(g(xi))

g(x) =

{
x if x > 1

2

−x otherwise

and each xj is a 1024×1024 random matrix with 32-bit floating-point
elements. This benchmark provides a balanced workload for which it is
easy to increase the arity N and measure the subsequent effect on hard-
ware utilization. Figure 6.4 shows how occupancy drops steadily from
5 arguments on, at which point the amount of registers exceeds 32 and
insufficient warps can be launched to satisfy the maximum number of
concurrent warps per SM. Hardware utilization is initially limited by the
low complexity of the kernel. It does not drop as strongly as the occu-
pancy, since higher arity also increases the workload of the kernel, but at
18 arguments both compute and bandwidth utilization drop below 60%
and the kernel can be considered latency-bound due to low occupancy.

Chapter 7
Status and Future Work
7.1 Code
The work presented in this dissertation is available as free and open-
source software, published on GitHub.com, and can easily be installed
using the Julia package manager. No special version of Julia is required,
and all the contributions to Julia packages have been integrated with
the respective development branches.

The interfaces from Chapter 2 have been part of Julia since ver-
sion 0.6. Together with the LLVM.jl package as introduced in Sec-
tion 2.5, they are used by the CUDAnative.jl compiler from Chapter 3,
but also empower other packages that extend or alter the Julia com-
piler. This includes XLA.jl for executing Julia on GoogleTPUs [59],
ExportWebAssembly.jl for exporting Julia code to WebAssembly [138],
and MCAnalyzer.jl to instrument generated machine code for analysis
by IACA (Intel Architecture Code Analyzer) orLLVM’s MCA (Machine
Code Analyzer) [45].

The JuliaGPU stack forCUDA devices consists of several packages
that have been created and/or are maintained by the author of this dis-
sertation: CUDAapi.jl, providing re-usable components for CUDAAPI
development; CUDAdrv.jl, wrapping the CUDA driver API; CUDA-
native.jl, making it possible to compile and execute Julia for CUDA
GPUs; and CuArrays.jl, building GPU array abstractions on top of
CUDAnative.jl and the vendor libraries shipped with the CUDA toolkit.
These packages do not consist of so-called “research code”: They are
documented, well-tested, and designed to work on a variety of user sys-
tems. This includes support for the major operating systems (Linux,
macOS, and Windows), different versions of CUDA, 32 as well as 64-bit
systems, etc. Every change is tested by several CI (Continuous Integra-
tion) services to keep track of this compatibility.

130 CHAPTER 7. STATUS AND FUTURE WORK

Several Julia applications and libraries rely on our GPU toolchain.
Examples include Oceananigans.jl [46], a non-hydrostatic ocean model,
Flux.jl [74], a popular machine-learning library, and Yao.jl [96], a frame-
work for designing quantum algorithms. Work is under way to support
use of CuArrays.jl in combination with Knet.jl [157], another machine-
learning library, and DifferentialEquations.jl for solving differential equa-
tions on the GPU [120]. This list is not exhaustive: As demonstrated
in Chapter 5, many applications and libraries already support and are
actively using our GPU toolchain without an explicit dependency by
virtue of the design of Julia’s array abstractions.

7.2 Future Work
Although the work presented in this dissertation is already used as a
foundation for a production-qualityGPU programming environment,
many improvements are still possible at each level of the stack. For
example, the interfaces from Chapter 2 could be generalized: They are
designed and implemented to cope with the restrictions of the GPU
execution environment, while a more structured approach to represent
troublesome operations would enable more powerful integration as well
as further lower the implementation burden of retargeting Julia to other
platforms. We are actively researching this approach for the purpose of
native garbage collection and exception handling on the GPU.

At the language level, multiple dispatch is a powerful feature to over-
ride arbitrary functionality for specific argument types. It has enabled
extensive reuse of the Julia standard library, by reimplementing specific
methods that would result in GPU-incompatible code. Although this
approach works well in the context of array operations, where we can
dispatch on a GPU array type, for scalar kernels there is no GPU-specific
type to dispatch on. By extending dispatch to incorporate a context, i.e.,
dispatching on the fact that code is to be executed on a GPU, we can
override functions where multiple dispatch would fall short. Preliminary
results based on Cassette.jl are promising, but require improvements to
the Julia compiler in order to generate GPU-compatible code [149, 124].

7.2. FUTURE WORK 131

GPU kernel programming in Julia with the compiler from Chap-
ter 3 benefits from the productivity improvements that come with a
high-level language: dynamically typed code, rich array types instead
of simple pointers, etc. However, there is a large untapped potential
of modeling GPU hardware features with high-level abstractions. For
example, the explicit GPU memory hierarchy (global, shared, local, con-
stant, texture and surface memory) could be modeled using an array
type hierarchy. Complex operations like WMMA (Warp Matrix Mul-
tiply and Accumulate) could be represented by high-level expressions
on static arrays. Initial research has shown that abstractions like these
greatly improve programmer productivity, especially in contrast to the
low-levelCUDA C development environment that GPU programmers
are used to [51].

Whereas abstractions at the kernel programming level would make
it possible for expert programmers to use the GPU more efficiently, we
also envision improved array abstractions that would benefit a much
larger community of programmers. These abstractions, as introduced
in Chapter 4, would focus on larger-scale operations such as efficient
use of the GPU’s multiple execution streams, or automatic distribution
of operations across multiple GPUs. Initial results include the com-
posability with DistributedArrays.jl from Chapter 5 for the purpose of
programming clusters of GPUs. We are currently investigating other ar-
ray applications and libraries that would benefit from GPU acceleration
in order to determine bottlenecks and identify those operations that are
crucial to GPU performance and programmability.

Beyond these improvements for the purpose of explicit GPU pro-
gramming, we also envision Julia’sIR to be well suited for high-level
compiler analyses such as automatic parallelization, blocking and tiling
transformations, etc. These optimizations would benefit from the rich
type information that is still available at that stage of compilation, as
demonstrated by some of the proof-of-concept compiler passes that are
part of XLA.jl [59].

132 CHAPTER 7. STATUS AND FUTURE WORK

Chapter 8
Conclusion

In this dissertation I have presented techniques and abstractions for
programmingGPU hardware accelerators in a high-level programming
language. To enable this, my work contributes several important im-
provements to different levels of the software development stack.

At the level of the programming language I have researched and de-
veloped interfaces to the high-level language’s compiler that make it pos-
sible to alter the compilation process. Using those interfaces, an existing
language can be retargeted to other platforms or execution environments
without the need to reimplement significant parts of the compiler. This
back end can coexist as an external package next to the main language
implementation, without requiring any permanent changes to its com-
piler. I have implemented and contributed these interfaces for the Julia
high-level programming language.

Building on the above interfaces I have developed the CUDAnative.jl
back end for programmingCUDA GPUs in Julia. The resulting GPU
development environment offers unprecedented high-level programming
capabilities for developing GPU kernels. At the same time, the generated
code performs as if written in low-level CUDA C.

To further improve the GPU programming experience, I have worked
on the CuArrays.jl package with array abstractions built on top of
CUDAnative.jl. These abstractions present a data parallel program-
ming model that obviates any GPU programming experience, and are
well-suited to express scientific algorithms and engineering applications
in a clear and concise manner. The availability of an GPUJIT com-
piler makes these abstractions very versatile, enabling both the design
of novel higher-level abstractions, and the ability to optimize code at
the lower-level kernel programming interface of CUDAnative.jl.

134 CHAPTER 8. CONCLUSION

I have also demonstrated how the design of these array abstractions
makes it possible to write portable applications that can be used across
hardware platforms. Again by virtue of a JIT compiler to generate
specialized code, it is possible to extend this portability to radically
different execution environments as well as make it possible to reuse
existing GPU-agnostic applications and libraries.

The design of certain array abstractions can also be exploited for
the purpose of algorithmic optimizations. I have illustrated how the
broadcast abstraction can be used to efficiently compute the derivative
of array expressions in a GPU-friendly manner. I have worked on a
GPU implementation of this technique based on CUDAnative.jl and
CuArrays.jl, leading to better performance than the approaches taken
by contemporary machine learning frameworks.

The high-level programming capabilities as presented in this disser-
tation improve the productivity of GPU programming at different levels
of abstraction, but have not radically changed the core programming
interface. I envision future research to further exploit the high-level
language’s features in order to improve productivity, develop novel ab-
stractions for the GPUs esoteric hardware features, or do away with
the kernel-based programming interface altogether and rely on Julia’s
high-levelIR to empower replacement abstractions.

Bibliography
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. “TensorFlow: A System for Large-Scale
Machine Learning”. In: Proceedings of the USENIX Conference on
Operating Systems Design and Implementation (OSDI). USENIX
Association, 2016, pp. 265–283.

[2] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-
Hochstadt, Joao Dias, Carl Eastlund, et al. The Fortress Lan-
guage Specification. 2005.

[3] Srinivas Aluru and Nagakishore Jammula. “A Review of Hard-
ware Acceleration for Computational Genomics”. In: IEEE De-
sign & Test 31.1 (2014).

[4] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan
Blackford, James Demmel, Jack Dongarra, Jeremy Du Croz,
Anne Greenbaum, Sven Hammarling, Alan McKenney, et al. LA-
PACK Users’ guide. SIAM, 1999.

[5] Todd A Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan
Vitek, and Tatiana Shpeisman. “Parallelizing Julia with a Non-
Invasive DSL”. In: LIPIcs-Leibniz International Proceedings in
Informatics. Vol. 74. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik. 2017.

[6] John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr,
Mathias Jacquelin, Amir Kamil, Brian van Straalen, and Scott
B. Baden. “The UPC++ PGAS Library for Exascale Comput-
ing”. In: Proceedings of the PGAS Applications Workshop (PAW).
ACM, 2017, 7:1–7:4.

[7] Satish Balay, William D Gropp, Lois Curfman McInnes, and
Barry F Smith. “Efficient Management of Parallelism in Object-
oriented Numerical Software libraries”. In: Modern Software Tools
for Scientific Computing. Springer, 1997, pp. 163–202.

136 BIBLIOGRAPHY

[8] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
“Legion: Expressing Locality and Independence with Logical Re-
gions”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society, 2012, pp. 1–11.

[9] Matt Bauman. Extensible Broadcast Fusion. 2018. url: https:
//julialang.org/blog/2018/05/extensible-broadcast-fusion.

[10] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich
Radul, and Jeffrey Mark Siskind. “Automatic Differentiation In
Machine Learning: A Survey.” In: Journal of Machine Learning
Research (JMLR) 18.153 (2017), pp. 1–153.

[11] Håvard Berland. “Automatic Differentiation”. 2006. url: http://
www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf.

[12] Tim Besard. “Effectively using GPUs with Julia”. Presented at
the third Belgian Julia user meetup (Ghent, Belgium, Dec. 21,
2018).

[13] Tim Besard. “High-Level GPU Programming with CUDA.jl”. Pre-
sented at the first Belgian Julia user meetup (Ghent, Belgium,
Sept. 29, 2015).

[14] Tim Besard. “High-Level Language Design for Extensible Accel-
erator Programming”. Presented at the Workshop on High-Level
Programming for Heterogeneous and Hierarchical Parallel Sys-
tems (HLPGPU) at the Conference on High Performance and
Embedded Architecture and Compilation (HiPEAC) (Valencia,
Spain, Jan. 23, 2019).

[15] Tim Besard. “High-Level Language Design for Extensible Ac-
celerator Programming”. Presented at the Workshop on Embed-
ded Multicore Programming at the HiPEAC Computing Systems
Week (CSW) (Edinburgh, United Kingdom, Apr. 17, 2019).

[16] Tim Besard. “Interfacing with LLVM using LLVM.jl”. Presented
at JuliaCon 2017 (Berkeley, CA, United States, June 22, 2017).

[17] Tim Besard. “Introduction to Julia”. Presented at the Belgian
TensorFlow user meetup (Ghent, Belgium, Feb. 6, 2019).

[18] Tim Besard. “Julia on the GPU”. Presented at the second Belgian
Julia user meetup (Brussels, Belgium, Apr. 13, 2016).

[19] Tim Besard. “Just Compile It: High-level Programming on the
GPU with Julia”. Presented at the European LLVM Developers
Meeting (EuroLLVM). 2019.

https://julialang.org/blog/2018/05/extensible-broadcast-fusion
https://julialang.org/blog/2018/05/extensible-broadcast-fusion
http://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf
http://www.robots.ox.ac.uk/~tvg/publications/talks/autodiff.pdf

BIBLIOGRAPHY 137

[20] Tim Besard. “Programming NVIDIA GPUs in Julia with CUDA-
native.jl”. Presented at JuliaCon 2017 (Berkeley, CA, United
States, June 21, 2017).

[21] Tim Besard, Valentin Churavy, and Simon Danisch. “GPU Pro-
gramming with Julia”. Presented at JuliaCon 2017 (Berkeley, CA,
United States, June 20, 2017).

[22] Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De
Sutter. “Rapid Software Prototyping for Heterogeneous and Dis-
tributed Platforms”. In: Advances in Engineering Software (AES)
(2019). doi: 10.1016/j.advengsoft.2019.02.002.

[23] Tim Besard, Bjorn De Sutter, Andrés Frías-Velázquez, and Wil-
fried Philips. “Case Study of Multiple Trace Transform Implemen-
tations”. In: International Journal of High Performance Comput-
ing Applications (IJHPCA) 29.4 (2015), pp. 489–505. doi: 10.
1177/1094342015584091.

[24] Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective
Extensible Programming: Unleashing Julia on GPUs”. In: Trans-
actions on Parallel and Distributed Systems (TPDS) (2018). issn:
1045-9219. doi: 10.1109/TPDS.2018.2872064. arXiv: 1712.03112
[cs.PL].

[25] Tim Besard and Mike Innes. “Julia: A Fresh Approach to
GPU Computing”. Presented at the GPU Technology Conference
(GTC) (San Jose, CA, United States, Mar. 28, 2018).

[26] Jeff Bezanson. “Abstractions in Technical Computing”. PhD the-
sis. Massachusetts Institute of Technology, 2015.

[27] Jeff Bezanson. “Why is Julia Fast? Can it be Faster?” Presented
at JuliaCon India. 2015.

[28] Jeff Bezanson, Jiahao Chen, Stefan Karpinski, Viral Shah, and
Alan Edelman. “Array Operators using Multiple Dispatch: A De-
sign Methodology for Array Implementations in Dynamic Lan-
guages”. In: Proceedings of ACM SIGPLAN International Work-
shop on Libraries, Languages, and Compilers for Array Program-
ming. ACM, 2014.

[29] Jeff Bezanson, Benjamin Chung, Jiahao Chen, Stefan Karpin-
ski, Viral B. Shah, Jan Vitek, and Lionel Zoubritzky. “Julia:
Dynamism and Performance Reconciled by Design”. In: Proceed-
ings of the ACM on Programming Languages 2.OOPSLA (2018),
p. 120.

https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1177/1094342015584091
https://doi.org/10.1177/1094342015584091
https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112
https://arxiv.org/abs/1712.03112

138 BIBLIOGRAPHY

[30] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Shah. “Julia: A Fresh Approach to Numerical Computing”. In:
SIAM Review 59.1 (2017), pp. 65–98.

[31] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edel-
man. “Julia: A Fast Dynamic Language for Technical Computing”.
2012. arXiv: 1209.5145 [cs.PL].

[32] Piotr Bialas and Adam Strzelecki. “Benchmarking the Cost of
Thread Divergence in CUDA”. In: International Conference on
Parallel Processing and Applied Mathematics (PPAM). Springer.
2015, pp. 570–579.

[33] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul,
Charles E Leiserson, Keith H Randall, and Yuli Zhou. “Cilk: An
Efficient Multithreaded Runtime System”. In: Journal of Parallel
and Distributed Computing 37.1 (1996), pp. 55–69.

[34] Olivier Breuleux and Bart van Merriënboer. “Automatic Differ-
entiation in Myia”. In: (2017).

[35] Xing Cai, Hans Petter Langtangen, and Halvard Moe. “On the
Performance of the Python Programming Language for Serial and
Parallel Scientific Computations”. In: Scientific Programming 13.1
(2005), pp. 31–56.

[36] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland.
“Kokkos: Enabling Manycore Performance Portability through
Polymorphic Memory Access Patterns”. In: Journal of Parallel
and Distributed Computing (2014), pp. 3202–3216.

[37] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. “Cop-
perhead: Compiling an Embedded Data Parallel Language”. In:
ACM SIGPLAN Notices 46.8 (2011).

[38] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L
McDonell, and Vinod Grover. “Accelerating Haskell Array Codes
with Multicore GPUs”. In: Proceedings of the 6th Workshop on
Declarative Aspects of Multicore Programming (DAMP). ACM.
2011, pp. 3–14.

[39] Bradford L Chamberlain, David Callahan, and Hans P Zima.
“Parallel Programmability and the Chapel Language”. In: Inter-
national Journal of High Performance Computing Applications
(IJHPCA) 21.3 (2007), pp. 291–312.

https://arxiv.org/abs/1209.5145

BIBLIOGRAPHY 139

[40] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von
Praun, and Vivek Sarkar. “X10: An Object-Oriented Approach
to Non-Uniform Cluster Computing”. In: ACM SIGPLAN No-
tices. Vol. 40. 10. ACM. 2005, pp. 519–538.

[41] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy
W Sheaffer, Sang-Ha Lee, and Kevin Skadron. “Rodinia: A Bench-
mark Suite for Heterogeneous Computing”. In: International Sym-
posium on Workload Characterization (IISWC). 2009.

[42] Jiahao Chen and Jarrett Revels. “Robust Benchmarking in Noisy
Environments”. 2016. arXiv: 1608 . 04295 [cs.PF]. url: https :
//github.com/JuliaCI/BenchmarkTools.jl.

[43] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. “TVM: End-to-End Compilation Stack
for Deep Learning”. Presented at the Conference on Systems and
Machine Learning (SysML). 2018.

[44] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. “Hierarchical
Multiscale Recurrent Neural Networks”. 2016. arXiv: 1609.01704
[cs.LG].

[45] Valentin Churavy. MCAnalyzer.jl: A Set of Tools for Machine
Code Analyzing of Julia Code. 2019. url: https://github.com/
vchuravy/MCAnalyzer.jl.

[46] Climate Modeling Alliance. Oceananigans.jl: A Fast and Friendly
Mon-hydrostatic Ocean Model in Julia. url: https://github.com/
climate-machine/Oceananigans.jl/.

[47] Continuum Analytics. “Anaconda Accelerate: GPU-Accelerated
Numerical Libraries for Python”. 2017. url: https : / / docs .
anaconda.com/accelerate/.

[48] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat.
“GPU Programming in a High Level Language: Compiling X10 to
CUDA”. In: Proceedings of the 2011 ACM SIGPLAN X10 Work-
shop. ACM. 2011, p. 8.

[49] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-
Standard API for Shared-Memory Programming”. In: IEEE Com-
puting in Science & Engineering (1998), pp. 46–55.

[50] Alain Darte. “On the Complexity of Loop Fusion”. In: Paral-
lel Computing 26.9 (2000), pp. 1175–1193. doi: 10.1016/s0167-
8191(00)00034-x.

https://arxiv.org/abs/1608.04295
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://arxiv.org/abs/1609.01704
https://arxiv.org/abs/1609.01704
https://github.com/vchuravy/MCAnalyzer.jl
https://github.com/vchuravy/MCAnalyzer.jl
https://github.com/climate-machine/Oceananigans.jl/
https://github.com/climate-machine/Oceananigans.jl/
https://docs.anaconda.com/accelerate/
https://docs.anaconda.com/accelerate/
https://doi.org/10.1016/s0167-8191(00)00034-x
https://doi.org/10.1016/s0167-8191(00)00034-x

140 BIBLIOGRAPHY

[51] Yasser Deceukelier. “An Extensible API for Productive GPU Pro-
gramming in Julia”. MA thesis. Ghent University, 2016.

[52] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S
Duff. “A Set of Level 3 Basic Linear Algebra Subprograms”. In:
ACM Transactions on Mathematical Software 16.1 (1990).

[53] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gre-
gory Peterson, and Jack Dongarra. “From CUDA to OpenCL: To-
wards a Performance-portable Solution for Multi-platform GPU
Programming”. In: Parallel Computing 38.8 (2012), pp. 391–407.

[54] Daniel L. Dvorak. “NASA Study on Flight Software Complexity”.
In: AIAA Infotech@Aerospace Conference. 2009, p. 1882.

[55] Conal Elliott. “The Simple Essence of Automatic Differentiation”.
In: Proceedings of the ACM on Programming Languages 2.70
(2018), pp. 1–29. issn: 2475-1421. doi: 10.1145/3236765.

[56] Paige Finkelstein. A Tensorflow Implementation of a Hierarchical
and Multiscale RNN. 2017. url: https://github.com/bolducp/
hierarchical-rnn.

[57] Keno Fischer. The Julia C++ Interface. 2018. url: https://
github.com/Keno/Cxx.jl.

[58] Keno Fischer and Jameson Nash. “Getting to Machine Learn-
ing from a General Purpose Compiler”. Presented at the C4ML
Workshop at the Conference on Code Generation and Optimiza-
tion (CGO). 2019.

[59] Keno Fischer and Elliot Saba. “Automatic Full Compilation of
Julia Programs and ML Models to Cloud TPUs”. Presented at
the Workshop on Systems for ML at the Conference on Neural
Information Processing Systems (NIPS). 2018. arXiv: 1810.09868
[cs.PL]. url: https://github.com/JuliaTPU/XLA.jl.

[60] Roy Frostig, Matthew James Johnson, and Chris Leary. “Com-
piling Machine Learning Programs via High-Level Tracing”. Pre-
sented at the Conference on Systems and Machine Learning
(SysML). 2018.

[61] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe
Dubach. “Just-in-time GPU Compilation for Interpreted Lan-
guages with Partial Evaluation”. In: ACM SIGPLAN Notices.
Vol. 52. 7. ACM. 2017, pp. 60–73.

[62] Mosè Giordano. “Uncertainty Propagation with Functionally Cor-
related Quantities”. 2016. arXiv: 1610.08716 [physics.data-an].

https://doi.org/10.1145/3236765
https://github.com/bolducp/hierarchical-rnn
https://github.com/bolducp/hierarchical-rnn
https://github.com/Keno/Cxx.jl
https://github.com/Keno/Cxx.jl
https://arxiv.org/abs/1810.09868
https://arxiv.org/abs/1810.09868
https://github.com/JuliaTPU/XLA.jl
https://arxiv.org/abs/1610.08716

BIBLIOGRAPHY 141

[63] Bart Goossens, Jonas De Vylder, and Wilfried Philips. “Quasar—
a new heterogeneous programming framework for image and
video processing algorithms on CPU and GPU”. In: 2014 IEEE In-
ternational Conference on Image Processing (ICIP). IEEE. 2014,
pp. 2183–2185.

[64] Robert Groth. “Is the Software Industry’s Productivity Declin-
ing?” In: IEEE Software 21.6 (2004), pp. 92–94.

[65] Takahiro Harada. “A Framework to Transform In-Core GPU Al-
gorithms to Out-of-Core Algorithms”. In: Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D). ACM. 2016, pp. 179–180.

[66] Mark Harris, Shubhabrata Sengupta, and John D Owens. “Paral-
lel Prefix Sum with CUDA”. In: GPU Gems 3.39 (2007), pp. 851–
876.

[67] Robert L Henderson. “Job Scheduling under the Portable Batch
System”. In: Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP). Springer. 1995,
pp. 279–294.

[68] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E Oancea. “Futhark: Purely Functional GPU-
Programming with Nested Parallelism and In-Place Array Up-
dates”. In: ACM SIGPLAN Notices 52.6 (2017), pp. 556–571.

[69] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert
J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B.
Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps,
Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro,
James M. Willenbring, Alan Williams, and Kendall S. Stanley.
“An Overview of the Trilinos Project”. In: ACM Transactions on
Mathematical Software (2005), pp. 397–423.

[70] Jared Hoberock and Nathan Bell. “Thrust: A Parallel Template
Library”. 2010. url: https://developer.nvidia.com/thrust.

[71] Leslie Hogben. Handbook of Linear Algebra. Discrete Mathemat-
ics and Its Applications. Chapman and Hall/CRC, 2006.

[72] Mike Innes. “Don’t Unroll Adjoint: Differentiating SSA-Form
Programs”. Presented at the Workshop on Systems for ML at the
Conference on Neural Information Processing Systems (NIPS).
2018. arXiv: 1810.07951 [cs.PL]. url: https://github.com/
FluxML/Zygote.jl.

https://developer.nvidia.com/thrust
https://arxiv.org/abs/1810.07951
https://github.com/FluxML/Zygote.jl
https://github.com/FluxML/Zygote.jl

142 BIBLIOGRAPHY

[73] Mike Innes, Stefan Karpinski, Viral Shah, David Barber, Pon-
tus Stenetorp, Tim Besard, James Bradbury, Valentin Churavy,
Simon Danisch, Alan Edelman, Jon Malmaud, Jarrett Revels,
and Deniz Yuret. “On Machine Learning and Programming Lan-
guages”. Presented at the Conference on Systems and Machine
Learning (SysML). 2018.

[74] Mike Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco
Concetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal
Singh, and Viral Shah. “Fashionable Modelling with Flux”. Pre-
sented at the Workshop on Systems for ML at the Conference
on Neural Information Processing Systems (NIPS). 2018. arXiv:
1811.01457 [cs.PL]. url: https://github.com/FluxML/Flux.jl.

[75] Philip M Johnson, Hongbing Kou, Michael Paulding, Qin Zhang,
Aaron Kagawa, and Takuya Yamashita. “Improving Software De-
velopment Management through Software Project Telemetry”. In:
IEEE software 22.4 (2005), pp. 76–85.

[76] Steven G. Johnson. More Dots: Syntactic Loop Fusion in Julia.
2017. url: https://julialang.org/blog/2017/01/moredots.

[77] Julia developers. CLArrays.jl: OpenCL-Backed GPU arrays for
Julia. 2018. url: https://github.com/JuliaGPU/CLArrays.jl.

[78] Julia developers. CuArrays.jl: CUDA-Accelerated Arrays for Julia.
2019. url: https://github.com/JuliaGPU/CuArrays.jl.

[79] Julia developers. CUBLAS.jl: Julia Interface to cuBLAS. 2017.
url: https://github.com/JuliaGPU/CUBLAS.jl.

[80] Julia developers. DistributedArrays.jl: Distributed Arrays in
Julia. 2019. url: https : / / github . com / JuliaParallel /
DistributedArrays.jl.

[81] Julia developers. PackageCompiler.jl: Compile your Julia Pack-
age. 2019. url: https://github.com/JuliaLang/PackageCompiler.
jl.

[82] Christoforos Kachris and Dimitrios Soudris. “A Survey on Recon-
figurable Accelerators for Cloud Computing”. In: International
Conference on Field Programmable Logic and Applications (FPL).
IEEE. 2016, pp. 1–10.

[83] Ken Kennedy and Kathryn S. McKinley. “Maximizing Loop Par-
allelism and Improving Data Locality via Loop Fusion and Dis-
tribution”. In: Languages and Compilers for Parallel Computing.
Berlin, Heidelberg: Springer, 1994, pp. 301–320. isbn: 978-3-540-
48308-3.

https://arxiv.org/abs/1811.01457
https://github.com/FluxML/Flux.jl
https://julialang.org/blog/2017/01/moredots
https://github.com/JuliaGPU/CLArrays.jl
https://github.com/JuliaGPU/CuArrays.jl
https://github.com/JuliaGPU/CUBLAS.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaLang/PackageCompiler.jl

BIBLIOGRAPHY 143

[84] Jiri Kraus. An Introduction to CUDA-Aware MPI. 2013. url:
https://devblogs.nvidia.com/introduction-cuda-aware-mpi/.

[85] Mayuram S Krishnan, Charlie H Kriebel, Sunder Kekre, and
Tridas Mukhopadhyay. “An Empirical Analysis of Productivity
and Quality in Software Products”. In: Management Science 46.6
(2000), pp. 745–759.

[86] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. “Deep
Learning on FPGAs: Past, Present, and Future”. 2016. arXiv:
1602.04283 [cs.DC].

[87] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A
LLVM-based Python JIT Compiler”. In: Proceedings of the Sec-
ond Workshop on the LLVM Compiler Infrastructure in HPC.
ACM. 2015, 7:1–7:6.

[88] P Lancaster and HK Farahat. “Norms on Direct Sums and Ten-
sor Products”. In: Mathematics of Computation 26.118 (1972),
pp. 401–414.

[89] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and
Martin Herbordt. “An Investigation of Unified Memory Access
Performance in CUDA”. In: Proceedings of the High Performance
Extreme Computing Conference (HPEC). IEEE. 2014, pp. 1–6.

[90] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: Pro-
ceedings of the International Symposium on Code Generation and
Optimization (CGO). 2004, pp. 75–86.

[91] Chris Lattner and Jacques Pienaar. “MLIR Primer: A Compiler
Infrastructure for the End of Moore’s Law”. Presented at the
C4ML Workshop at the Conference on Code Generation and Op-
timization (CGO). 2019.

[92] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-
Gayot, Richard Membarth, Philipp Slusallek, André Müller, and
Bertil Schmidt. “AnyDSL: A Partial Evaluation Framework for
Programming High-Performance Libraries”. In: Proceedings of the
ACM on Programming Languages 2.OOPSLA (2018), p. 119.

[93] Calle Lejdfors and Lennart Ohlsson. “PyGPU: A High-Level Lan-
guage for High-Speed Image Processing”. In: Proceedings of the
International Conference on Applied Computing (ACIT). IADIS.
2007, pp. 66–81.

https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://arxiv.org/abs/1602.04283

144 BIBLIOGRAPHY

[94] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and
Jonathan Ragan-Kelley. “Differentiable Programming for Image
Processing and Deep Learning in Halide”. In: ACM Transactions
on Graphics (TOG) 37.4 (2018), p. 139.

[95] Xuechao Li, Po-Chou Shih, Jeffrey Overbey, Cheryl Seals, and
Alvin Lim. “Comparing Programmer Productivity in OpenACC
and CUDA: An Empirical Investigation”. In: International Jour-
nal of Computer Science, Engineering and Applications (IJCSEA)
6.5 (2016), pp. 1–15.

[96] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, and Lei Wang. “Vari-
ational Quantum Eigensolver with Fewer Qubits”. 2019. arXiv:
1902.02663 [quant-ph].

[97] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. “High Per-
formance RDMA-Based MPI iMplementation over InfiniBand”.
In: International Journal of Parallel Programming 32.3 (2004),
pp. 167–198.

[98] Justin Luitjens. Faster Parallel Reductions on Kepler. 2015.
[99] Dougal Maclaurin, David Duvenaud, and Ryan Adams.

“Gradient-based Hyperparameter Optimization through Re-
versible Learning”. In: International Conference on Machine
Learning. 2015, pp. 2113–2122.

[100] Anton Malakhov. “Composable Multi-Threading for Python Li-
braries”. In: Proceedings of the Python in Science Conferences
(SciPy). 2016.

[101] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vish-
wanath Venugopalakrishnan, Krunal Patel, and John Melonakos.
“ArrayFire: a GPU Acceleration Platform”. In: Proceedings of the
SPIE. Vol. 8403. International Society for Optics and Photonics.
2012, 84030A–1.

[102] Nikolay Markovskiy. “Drop-In Acceleration of GNU Octave”.
2014. url: https://devblogs.nvidia.com/parallelforall/drop-
in-acceleration-gnu-octave/.

[103] Bart van Merriënboer, Alexander B. Wiltschko, and Dan
Moldovan. “Tangent: Automatic Differentiation Using Source
Code Transformation in Python”. 2017. arXiv: 1711 . 02712
[cs.MS].

https://arxiv.org/abs/1902.02663
https://devblogs.nvidia.com/parallelforall/drop-in-acceleration-gnu-octave/
https://devblogs.nvidia.com/parallelforall/drop-in-acceleration-gnu-octave/
https://arxiv.org/abs/1711.02712
https://arxiv.org/abs/1711.02712

BIBLIOGRAPHY 145

[104] Duane Merrill. “CUB: A pattern of “collective” Software De-
sign, Abstraction, and Reuse for Kernel-Level Programming”.
Presented at the GPU Technology Conference (GTC). 2015. url:
https://nvlabs.github.io/cub/.

[105] RV Mises and Hilda Pollaczek-Geiringer. “Praktische Verfahren
der Gleichungsauflösung.” In: Journal of Applied Mathematics
and Mechanics (ZAMM) 9.1 (1929), pp. 152–164.

[106] MPI Forum. MPI: A Message-Passing Interface Standard. Tech.
rep. 1994.

[107] Jameson Nash. Inference Convergence Algorithm in Julia. 2016.
url: https://juliacomputing.com/blog/2016/04/04/inference-
convergence.html.

[108] Jameson Nash. Inference Convergence Algorithm in Julia - Re-
visited. 2017. url: https://juliacomputing.com/blog/2017/05/
15/inference-converage2.html.

[109] Jameson Nash. Static and Ahead of Time Compiled Julia. 2016.
url: https://juliacomputing.com/blog/2016/02/09/static-
julia.html.

[110] Uwe Naumann. “Optimal Jacobian Accumulation is NP-
Complete”. In: Mathematical Programming 112.2 (2008), pp. 427–
441.

[111] Uwe Naumann. “Optimized Jacobian Accumulation Techniques”.
In: Problems in Modern Applied Mathematics. WSES Press, 2000.

[112] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield.
“Global Arrays: A Portable Shared-Memory Programming Model
for Distributed Memory Computers”. In: Proceedings of the Con-
ference on Supercomputing. IEEE Computer Society Press. 1994,
pp. 340–349.

[113] NVIDIA. “cuBLAS: Dense Linear Algebra on GPUs”. 2008. url:
https://developer.nvidia.com/cublas.

[114] NVIDIA Corporation. “NVIDIA Tesla V100 GPU Architecture”.
2017. url: https : / / images . nvidia . com / content / volta -
architecture/pdf/volta-architecture-whitepaper.pdf.

[115] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky,
and Markus Püschel. “SPIRAL in Scala: Towards the Systematic
Construction of Generators for Performance Libraries”. In: ACM
SIGPLAN Notices. Vol. 49. 3. ACM. 2013, pp. 125–134.

https://nvlabs.github.io/cub/
https://juliacomputing.com/blog/2016/04/04/inference-convergence.html
https://juliacomputing.com/blog/2016/04/04/inference-convergence.html
https://juliacomputing.com/blog/2017/05/15/inference-converage2.html
https://juliacomputing.com/blog/2017/05/15/inference-converage2.html
https://juliacomputing.com/blog/2016/02/09/static-julia.html
https://juliacomputing.com/blog/2016/02/09/static-julia.html
https://developer.nvidia.com/cublas
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

146 BIBLIOGRAPHY

[116] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. “Automatic Differentiation in Py-
Torch”. Presented at the Autodiff Workshop at the Conference
on Neural Information Processing Systems (NIPS). 2017.

[117] Barak A. Pearlmutter and Jeffrey Mark Siskind. “Reverse-mode
AD in a Functional Framework: Lambda the Ultimate Backprop-
agator”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 30.2 (2008), 7:1–7:36. issn: 0164-0925. doi:
10.1145/1330017.1330018. url: http://doi.acm.org/10.1145/
1330017.1330018.

[118] Fernando Pérez and Brian E Granger. “IPython: A System for
Interactive Scientific Computing”. In: Computing in Science &
Engineering 9.3 (2007).

[119] Guillem Pratx and Lei Xing. “GPU Computing in Medical
Physics: A Review”. In: Medical Physics 38.5 (2011), pp. 2685–
2697.

[120] Christopher Rackauckas and Qing Nie. “Differentialequations.jl:
A Performant and Feature-rich Ecosystem for Solving Differen-
tial Equations in Julia”. In: Journal of Open Research Software
(JORS) 5.1 (2017).

[121] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc
Levoy, Saman Amarasinghe, and Frédo Durand. “Decoupling Al-
gorithms from Schedules for Easy Optimization of Image Process-
ing Pipelines”. In: ACM Transactions on Graphics 31.4 (2012),
32:1–32:12.

[122] Min Ragan-Kelley, Fernando Pérez, Brian E Granger, Thomas
Kluyver, Paul Ivanov, Jonathan Frederic, and Matthias Busson-
nier. “The Jupyter/IPython Architecture: A Unified View of
Computational Research, from Interactive Exploration to Com-
munication and Publication.” In: AGU Fall Meeting Abstracts.
2014.

[123] Jeffrey Regier, Kiran Pamnany, Keno Fischer, Andreas Noack,
Maximilian Lam, Jarrett Revels, Steve Howard, Ryan Giordano,
David Schlegel, Jon McAuliffe, and Prabhat Thomas Rollin. “Cat-
aloging the Visible Universe through Bayesian Inference at Petas-
cale”. 2018. arXiv: 1801.10277 [cs.DC].

https://doi.org/10.1145/1330017.1330018
http://doi.acm.org/10.1145/1330017.1330018
http://doi.acm.org/10.1145/1330017.1330018
https://arxiv.org/abs/1801.10277

BIBLIOGRAPHY 147

[124] Jarrett Revels. Cassette.jl: A Tool For Dynamically Extending
the Julia Compiler. 2019. url: https://github.com/jrevels/
Cassette.jl.

[125] Jarrett Revels. ReverseDiff: Reverse-Mode AD in Julia. 2018.
url: https://github.com/JuliaDiff/ReverseDiff.jl.

[126] Jarrett Revels, Tim Besard, Valentin Churavy, Bjorn De Sutter,
and Juan Pablo Vielma. “Dynamic Automatic Differentiation of
GPU Broadcast Kernels”. Presented at the Workshop on Systems
for ML at the Conference on Neural Information Processing Sys-
tems (NeurIPS). 2018. arXiv: 1810.08297 [cs.MS].

[127] Jarrett Revels, Miles Lubin, and T. Papamarkou. “Forward-Mode
Automatic Differentiation in Julia”. 2016. arXiv: 1607 . 07892
[cs.MS]. url: https://github.com/JuliaDiff/ForwardDiff.jl.

[128] Tiark Rompf and Martin Odersky. “Lightweight Modular Stag-
ing: A Pragmatic Approach to Runtime Code Generation and
Compiled DSLs”. In: ACM SIGPLAN Notices. Vol. 46. 2. ACM.
2010, pp. 127–136.

[129] Noam Ross. Vectorization in R: Why? 2014. url: http://www.
noamross.net/blog/2014/4/16/vectorization-in-r--why.html.

[130] Alex Rubinsteyn et al. “Parakeet: A Just-in-Time Parallel Accel-
erator for Python”. In: Proceedings on the USENIX Conference
on Hot Topics in Parallelism (HotPar). 2012.

[131] Phil Ruffwind. Reverse-mode Automatic Differentiation: A Tuto-
rial. 2016. url: https://rufflewind.com/2016-12-30/reverse-
mode-automatic-differentiation.

[132] Karl Rupp, Florian Rudolf, and Josef Weinbub. “ViennaCL: A
High Level Linear Algebra Library for GPUs and Multi-Core
CPUs”. In: International Workshop on GPUs and Scientific Ap-
plications (GPUScA). 2010, pp. 51–56.

[133] Nikolay Sakharnykh. Beyond GPU Memory Limits with Unified
Memory on Pascal. 2016. url: https://devblogs.nvidia.com/
beyond-gpu-memory-limits-unified-memory-pascal/.

[134] David P. Sanders and Luis Benet. IntervalArithmetic.jl: Com-
pile your Julia Package. 2019. url: https : / / github . com /
JuliaIntervals/IntervalArithmetic.jl.

[135] Souradip Sarkar, Turbo Majumder, Ananth Kalyanaraman, and
Partha Pratim Pande. “Hardware Accelerators for Biocomputing:
A Survey”. In: Proceedings of the International Symposium on
Circuits and Systems (ISCAS). IEEE. 2010, pp. 3789–3792.

https://github.com/jrevels/Cassette.jl
https://github.com/jrevels/Cassette.jl
https://github.com/JuliaDiff/ReverseDiff.jl
https://arxiv.org/abs/1810.08297
https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892
https://github.com/JuliaDiff/ForwardDiff.jl
http://www.noamross.net/blog/2014/4/16/vectorization-in-r--why.html
http://www.noamross.net/blog/2014/4/16/vectorization-in-r--why.html
https://rufflewind.com/2016-12-30/reverse-mode-automatic-differentiation
https://rufflewind.com/2016-12-30/reverse-mode-automatic-differentiation
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://github.com/JuliaIntervals/IntervalArithmetic.jl

148 BIBLIOGRAPHY

[136] Jeffrey Sarnoff. DoubleFloats.jl: Extended Precision Float and
Complex Types. 2019. url: https : / / github . com / JuliaMath /
DoubleFloats.jl.

[137] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, Simon
L. Peyton Jones, and Christoph Koch. “Efficient Differentiable
Programming in a Functional Array-Processing Language”. 2018.
arXiv: 1806.02136 [cs.MS].

[138] Tim Short. ExportWebAssembly.jl: Export Julia functions to Web-
Assembly and JavaScript. 2018. url: https : / / github . com /
tshort/ExportWebAssembly.jl.

[139] N Solntseff and A Yezerski. “A Survey of Extensible Program-
ming Languages”. In: Annual Review in Automatic Programming
7 (1974).

[140] Michel Steuwer, Toomas Remmelg, and Christophe Dubach.
“Lift: a Functional Data-Parallel IR for High-Performance GPU
Code Generation”. In: Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO). IEEE. 2017,
pp. 74–85.

[141] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. “Delite:
A Compiler Architecture for Performance-oriented Embedded
Domain-specific Languages”. In: ACM Transactions on Embed-
ded Computing Systems (TECS) 13.4s (2014), p. 134.

[142] Walid Taha and Tim Sheard. “MetaML and Multi-stage Program-
ming with Explicit Annotations”. In: Theoretical Computer Sci-
ence 248.1-2 (2000), pp. 211–242.

[143] Thomas Tan, Qi Li, Barry Boehm, Ye Yang, Mei He, and Ramin
Moazeni. “Productivity tRends in Incremental and Iterative Soft-
ware Development”. In: Proceedings of the International Sym-
posium on Empirical Software Engineering and Measurement
(ESEM). IEEE. 2009, pp. 1–10.

[144] The PyTorch Team. Torch Script Documentation. 2018. url:
https://pytorch.org/docs/master/jit.html.

[145] TIOBE Company. TIOBE Programming Community Index. Feb.
2018. url: https://www.tiobe.com/tiobe-index/.

[146] Qiang Tu et al. “Evolution in Open Source Software: A Case
Study”. In: Proceedings of the International Conference on Soft-
ware Maintenance (ICSME). IEEE. 2000, pp. 131–142.

https://github.com/JuliaMath/DoubleFloats.jl
https://github.com/JuliaMath/DoubleFloats.jl
https://arxiv.org/abs/1806.02136
https://github.com/tshort/ExportWebAssembly.jl
https://github.com/tshort/ExportWebAssembly.jl
https://pytorch.org/docs/master/jit.html
https://www.tiobe.com/tiobe-index/

BIBLIOGRAPHY 149

[147] Sujatha R Upadhyaya. “Parallel Approaches to Machine Learn-
ing: A Comprehensive Survey”. In: Journal of Parallel and Dis-
tributed Computing 73.3 (2013), pp. 284–292.

[148] Stefan Van Der Walt, Chris Colbert, and Gael Varoquaux. “The
NumPy Array: A Structure for Efficient Numerical Computation”.
In: Computing in Science & Engineering 13.2 (2011), p. 22.

[149] Henri Verroken. “Contextual Language Abstractions for Low-
Level GPGPU”. MA thesis. Ghent University, 2018.

[150] Fei Wang, Xilun Wu, Gregory Essertel, James Decker, and Tiark
Rompf. “Demystifying Differentiable Programming: Shift/Re-
set the Penultimate Backpropagator”. 2018. arXiv: 1803.10228
[cs.LG].

[151] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and
Andreas Herkersdorf. “Enabling FPGAs in Hyperscale Data Cen-
ters”. In: Proceedings of the International Conference on Ubiqui-
tous Intelligence and Computing, Autonomic and Trusted Com-
puting, Scalable Computing and Communications. IEEE. 2015,
pp. 1078–1086.

[152] Richard Wei. “First-Class Automatic Differentiation in Swift:
A Manifesto”. 2018. url: https : / / gist . github . com / rxwei /
30ba75ce092ab3b0dce4bde1fc2c9f1d.

[153] Richard Wei, Lane Schwartz, and Vikram Adve. “A Modern Com-
piler Framework for Neural Network DSLs”. Presented at the
Workshop on ML Systems at the Conference on Neural Infor-
mation Processing Systems (NIPS). 2017.

[154] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter
an Mey. “OpenACC: First Experiences with Real-world Applica-
tions”. In: Proceedings of the European Conference on Parallel
Processing (Euro-Par). Springer-Verlag, 2012, pp. 859–870.

[155] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan,
Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xue-
tian Weng, and Robert Hundt. “gpucc: An Open-Source GPGPU
Compiler”. In: Proceedings of the International Symposium on
Code Generation and Optimization (CGO). ACM. 2016, pp. 105–
116.

[156] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Sim-
ple Linux Utility for Resource Management”. In: Proceedings of
the Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP). Springer. 2003, pp. 44–60.

https://arxiv.org/abs/1803.10228
https://arxiv.org/abs/1803.10228
https://gist.github.com/rxwei/30ba75ce092ab3b0dce4bde1fc2c9f1d
https://gist.github.com/rxwei/30ba75ce092ab3b0dce4bde1fc2c9f1d

150 BIBLIOGRAPHY

[157] Deniz Yuret. “Knet: Beginning Deep Learning with 100 Lines
of Julia”. In: Machine Learning Systems Workshop at NIPS.
Vol. 2016. 2016, p. 5.

[158] Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn,
Benjamin Chung, Jeff Bezanson, and Jan Vitek. “Julia Subtyp-
ing: A Rational Reconstruction”. In: Proceedings of the ACM on
Programming Languages 2.OOPSLA (2018), p. 113.

[159] Daniel Zingaro. “Modern Extensible Languages”. In: SQRL Re-
port 47 (2007), p. 16.

	Nederlandstalige samenvatting
	English summary
	Introduction
	Context
	Key Challenges
	The Julia Programming Language
	Structure and Contributions
	Other Contributions

	Dynamic Compiler Back Ends
	Proposed Toolchain
	Related Work
	Background: The Julia Programming Language
	Design
	Implementation
	Metaprogramming

	Language Interfaces
	Parameters and Hooks
	Future Extensions

	Code Generation
	Extended LLVM IR Metaprogramming
	LLVM Wrapper

	CUDA Language Implementation
	Background and Related Work
	Structure
	Standard Library
	Implementation
	Pointers with Address Spaces
	NVIDIA Device Library

	Compiler Back End
	Compilation Process
	Optimization Passes

	CUDA API Wrapper
	Run-Time System
	Kernel Launching
	Interactive Programming
	Reflection and Introspection

	Evaluation
	Experimental Set-Up
	Methodology
	Kernel Performance
	Compilation Overhead
	Application Performance
	Run-Time System Performance
	Lines of Code

	High-Level Array Programming with GPUs
	Example Applications
	Power Iteration
	Proximal Gradient Descent
	Kronecker Product

	Related Work
	Background: Array Programming in Julia
	Higher-Order Array Abstractions
	Dot Expressions
	Broadcast Fusion

	Heterogeneous Programming with Arrays
	Array Type Hierarchy
	AbstractArray Interface
	broadcast Abstraction

	CuArrays.jl
	Array Operations
	Higher-Order Abstractions
	Memory Management
	Low-level Flexibility

	Array Programming for Portability
	Background and Related Work
	DistributedArrays.jl
	Evaluation
	Application Portability
	Library Portability
	Array Infrastructure Portability

	Performance
	Power Iteration
	Performance of DistributedArrays.jl
	Kronecker Product
	Proximal Gradient Descent

	Optimization Opportunities
	Array Programming
	Multiple Dispatch

	Automatic Differentiation of GPU Broadcast Kernels
	Related Work
	Background: Automatic Differentiation
	Forward Mode
	Reverse Mode
	Forward vs. Reverse Mode
	Mixed Mode

	Evaluation
	HM-LSTM Cell Update
	Reverse-Mode TensorFlow
	Reverse-Mode Julia
	Forward-Mode Julia

	Performance
	Reverse Mode
	Forward Mode
	Broadcast Arity

	Status and Future Work
	Code
	Future Work

	Conclusion

